

SCHOOL OF ENGINEERING AND TECHNOLOGY

Programme Handbook (Programme Study and Evaluation Scheme)

Bachelor in Computer Applications (BCA) With Specialization in AI & Data Science [Honors/Honors with Research] Programme Code: 201

UNDERGRADUATE PROGRAMME

As per National Education Policy 2020 (Multiple Entry and Exit in Academic Programmes) (With effect from 2024-25 session)

Approved in the 34th Meeting of Academic Council Held on 29 June 2024

Table of Contents

S.N.	Content	Page No.
1	Preface	3
2	NEP-2020	5
3	Categories of Courses	6
4	University Vision and Mission	8
5	About the School	8
6	School Vision & Mission	10
7	About the Program	11
8	Program Educational Objectives (PEO)	12
9	Program Objectives (PO)	12
10	Program Specific Objectives (PSO)	13
11	Career Avenues	13
12	Duration	14
13	Eligibility Criteria for Award of Degree	15
14	Student's Structured Learning Experience from Entry to Exit	15
	in the Programme	
15	Scheme of Studies	27
16	Evaluation Scheme	38
17	Syllabus	39

1. Preface

Welcome to the School of Engineering and Technology at K. R. Mangalam University. It is with great enthusiasm that we introduce you to an institution dedicated to nurturing future leaders in engineering and technology.

Established in 2013, our School has rapidly evolved into a premier center for innovation, quality education, and skill development. With a focus on imparting advanced knowledge and fostering creativity, we are committed to providing a transformative educational experience. Our state-of-the-art infrastructure, cuttingedge laboratories, and a distinguished team of faculty members collectively create an environment where academic and professional excellence thrives.

Our diverse programs encompass undergraduate degrees (B.Tech, BCA, B.Sc), postgraduate studies (M.Tech, MCA), and doctoral research across all engineering disciplines. Notably, we offer specialized B.Tech programs in areas such as Artificial Intelligence & Machine Learning, Data Science, Cyber Security, Full Stack Development, and UI/UX Development. These programs are designed to equip students with both technical proficiency and a deep understanding of emerging technologies.

At the heart of our mission is a commitment to a curriculum that integrates the best practices from leading global institutions while also incorporating insights from the Open-Source Society University. This curriculum emphasizes problem-solving, interdisciplinary learning, and innovative teaching methodologies, all aligned with the National Education Policy (NEP) 2020.

Our emphasis on industry integration is reflected in our collaborations with renowned organizations such as IBM, Samatrix, Xebia, E.C Council, and ImaginXP. These partnerships ensure that our students gain practical experience and insights that are directly applicable to industry demands. Elective options across diverse domains, including AI, Cloud Computing, Cyber Security, and Full Stack Development, offer students the flexibility to tailor their educational experience to their career aspirations.

We are also dedicated to fostering a culture of innovation and entrepreneurship through our Entrepreneurship and Incubation Center and initiatives like 'MindBenders,' 'Hack-KRMU,' and participation in the 'Smart India Hackathon.' These programs are designed to inspire and prepare students to become forwardthinking leaders in the technology sector.

Our modern computing facilities and comprehensive infrastructure support advanced research, simulations, and hands-on projects, ensuring that our students are well-prepared for the challenges of the professional world. K. R. Mangalam University is recognized for its commitment to providing quality education, and our alumni have made notable contributions across various sectors, from multinational corporations to public sector enterprises.

We are excited to accompany you on this journey and look forward to supporting your academic and professional growth. Welcome to a community where excellence and innovation are at the core of everything we do.

School of Engineering & Technology K.R Mangalam University

2. NEP-2020: K.R. Mangalam University has adopted the National Education Policy NEP-2020 to establish a holistic and multidisciplinary undergraduate education environment, aiming to equip our students for the demands of the 21st century. Following the guidelines of NEP-2020 regarding curriculum structure and duration of the undergraduate programme, we now offer a Four-Year Undergraduate Programme with multiple entry and exit points, along with re-entry options, and relevant certifications.

- UG Certificate after completing 1 year (2 semesters with the required number of credits) of study, and an additional vocational course/internship of 4 credits during the summer vacation of the first year.
- UG Diploma after completing 2 years (4 semesters with the required number of credits) of study, and an additional vocational course/internship of 4 credits during the summer vacation of the second year.
- **Bachelor's Degree** after completing 3-year (6 semesters with the required number of credits) programme of study.
- 4-year Bachelor's Degree (Honours) with the required number of credits after eight semesters programme of study.
- Students who secure 75% marks and above in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. Upon completing a research project in their major area(s) of study in the 4th year, a student will be awarded **Bachelor's Degree (Honours** with Research).

Advantage of pursuing 4-year Bachelor's degree programme with Honours/Honours with Research is that the Master's degree will be of one year duration. Also, a 4-year degree programme will facilitate admission to foreign universities.

S. No.	Broad Categories of Courses	Minimum Credit Requirement
		for Four Year UG Program
1	Major (Core)	80
2	Minor	32
3	Multidisciplinary	09
4	Ability Enhancement Course (AEC)	08
5	Skill Enhancement Course (SEC)	09
6	Value-Added Course (VAC)	06-08
7	Summer Internship	02-04
8	Research Project/Dissertation	12
9	Total	160

2.1 Categories of Courses

Major: The major would provide the opportunity for a student to pursue in-depth study of a particular subject or discipline.

Minor: Students will have the option to choose courses from disciplinary/interdisciplinary minors and skill-based courses. Students who take a sufficient number of courses in a discipline or an interdisciplinary area of study other than the chosen major will qualify for a minor in that discipline or in the chosen interdisciplinary area of study.

Multidisciplinary (Open Elective): These courses are intended to broaden the intellectual experience and form part of liberal arts and science education. These introductory-level courses may be related to any of the broad disciplines given below:

- Natural and Physical Sciences
- Mathematics, Statistics, and Computer Applications
- Library, Information, and Media Sciences
- Commerce and Management
- Humanities and Social Sciences

A diverse array of Open Elective Courses, distributed across different semesters and aligned with the aforementioned categories, is offered to the students. These courses enable students to expand their perspectives and gain a holistic understanding of various disciplines. Students can choose courses based on their areas of interest.

Ability Enhancement Course (AEC): Students are required to achieve competency in a Modern Indian Language (MIL) and in the English language with special emphasis on language and communication skills. The courses aim at enabling the students to acquire and demonstrate the core linguistic skills, including critical reading and expository and academic writing skills, that help students articulate their arguments and present their thinking clearly and coherently and recognize the importance of language as a mediator of knowledge and identity.

Skills Enhancement Courses (SEC): These courses are aimed at imparting practical skills, hands-on training, soft skills, etc., to enhance the employability of students.

Value-Added Course (VAC): The Value-Added Courses (VAC) are aimed at inculcating Humanistic, Ethical, Constitutional and Universal human values of truth, righteous conduct, peace, love, non-violence, scientific and technological advancements, global citizenship values and life-skills falling under below given categories:

- Understanding India
- Environmental Science/Education
- Digital and Technological Solutions
- Health & Wellness, Yoga education, Sports, and Fitness

Research Project / Dissertation: Students choosing a 4-Year Bachelor's degree (Honours with Research) are required to take up research projects under the guidance of a faculty member. The students are expected to complete the Research

Project in the eighth semester. The research outcomes of their project work may be published in peer-reviewed journals or may be presented in conferences /seminars or may be patented.

3. University Vision and Mission

3.1 Vision

K.R. Mangalam University aspires to become an internationally recognized institution of higher learning through excellence in inter-disciplinary education, research, and innovation, preparing socially responsible life-long learners contributing to nation building.

3.2 Mission

- Foster employability and entrepreneurship through futuristic curriculum and progressive pedagogy with cutting-edge technology
- Instill notion of lifelong learning through stimulating research, Outcomesbased education, and innovative thinking
- Integrate global needs and expectations through collaborative programs with premier universities, research centres, industries, and professional bodies.
- Enhance leadership qualities among the youth having understanding of ethical values and environmental realities

4. About the School

The School of Engineering and Technology at K. R. Mangalam University started in 2013 to create a niche of imparting quality education, innovation, entrepreneurship, skill development and creativity. It has excellent infrastructure, state of the art Labs, and a team of qualified and research-oriented faculty members.

The school is offering undergraduate programs (B.Tech, BCA, B.Sc), postgraduate programs (M.Tech, MCA) and Ph.D (all disciplines of Engineering). We are offering

B.Tech programs in recent areas of specializations like AI & ML, Data Science, Cyber Security, Full stack development, UI/UX development etc.

Our strength lies in our highly qualified, research oriented, and committed teaching faculty. We believe in empowering minds through expert guidance, ensuring that our students receive a world-class education that prepares them for the challenges of the ever-evolving technological landscape.

The School of Engineering & Technology is committed to providing a cutting-edge curriculum by integrating the best practices from top global universities and leveraging the rich knowledge resources of the Open-Source Society University. The curriculum focuses on problem-solving, design; development, interdisciplinary learning, skill development, research opportunities and application of various emerging technologies with focus on innovative teaching learning methodologies. Aligned with the National Education Policy (NEP) 2020, our curriculum is designed to provide a holistic and contemporary learning experience.

We take pride in offering an industry-integrated curriculum that goes beyond traditional education. Collaborations and training led by industry experts, along with partnerships with renowned organizations such as IBM, Samatrix, Xebia, E.C Council, ImaginXP etc ensure that our students gain practical insights and skills that align with real-world industry demands.

With elective options across various domains, including AI, Cloud Computing, Cyber Security, and Full Stack Development, we empower students to customize their learning experience. Our goal is to provide the flexibility needed for each student to shape their academic and professional future.

We prioritize career growth by offering comprehensive training, placements, international internships, and preparation for further studies. Our commitment to nurturing globally competitive professionals is reflected in the diverse pathways we pave for our students.

SOET aims at transforming the students into competitive engineers with adequate analytical skills, making them more acceptable to potential employers in the country. At our school, we emphasize learning through doing. Whether it's projectbased learning, field projects, research projects, internships, or engaging in competitive coding, our students actively shape their futures by applying theoretical knowledge to practical scenarios. We provide opportunities for industrial projects, R&D projects, and start-up projects in the final year, ensuring that our students engage in real-world innovation.

We are dedicated to fostering a culture of innovation and entrepreneurship, recognizing these as essential pillars for the success of our students in the rapidly evolving world of technology. We inspire innovation and entrepreneurship through our dynamic Entrepreneurship and Incubation Center, engaging contests like 'MindBenders', 'Hack-KRMU,' participation in 'Smart India Hackathon', International Conference 'MRIE' empowering students to become forward-thinking leaders in the ever-evolving realm of technology.

We pride ourselves on providing state-of-the-art computing facilities and infrastructure. Our modern labs and computing resources are equipped to support the diverse needs of our students, enabling them to engage in advanced research, simulations, and hands-on projects.

K.R. Mangalam University has marked its presence in Delhi NCR as a value-based university, successfully imparting quality education in all domains. Our alumni are working across all sectors of technology, from MNCs to PSUs.

5. School Vision and Mission

Vision

To excel in scientific and technical education through integrated teaching, research, and innovation.

Mission

- Creating a unique and innovative learning experience to enhance quality in the domain of Engineering & Technology.
- Promoting Curricular, co-curricular and extracurricular activities that support overall personality development and lifelong learning, emphasizing character building and ethical behavior.

- **Focusing** on employability through research, innovation and entrepreneurial mindset development.
- **Enhancing** collaborations with National and International organizations and institutions to develop cross-cultural understanding to adapt and thrive in the 21st century.

6. About the Programme

6.1 Definitions

> Programme Outcomes (POs)

Programme Outcomes are statements that describe what the students are expected to know and would be able to do upon the graduation. These relate to the skills, knowledge, and behaviour that students acquire through the programme.

> Programme Specific Outcomes (PSOs)

Programme Specific Outcomes define what the students should be able to do at the time of graduation and they are programme specific. There are two to four PSOs for a programme.

> Programme Educational Objectives (PEOs)

Programme Educational Objectives of a degree programme are the statements that describe the expected achievements of graduates in their career, and what the graduates are expected to perform and achieve during the first few years after graduation.

> Credit

Credit refers to a unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to 14-15 periods for theory, or 28-30 periods for workshop/labs and tutorials

6.2 **Programme Educational Objectives (PEO)**

PEO1: Successful professionals in industry, government, academia, research, entrepreneurial pursuits and consulting firms.

PEO2: Able to apply their knowledge of computer science & engineering principles to solve societal problems by exhibiting a strong foundation in both theoretical and practical aspects of the field.

PEO3: Dedicated to upholding professional ethics and social responsibilities, with a strong commitment to advancing sustainability goals.

PEO4: Demonstrating strong leadership skills and a proven ability to collaborate effectively in diverse, multidisciplinary teams to successfully achieve project objectives.

6.3 Programme Outcomes (PO)

Engineering Graduates will be able to:

PO1. Core Competencies in Engineering: Graduates will possess a strong foundation in engineering knowledge, critical problem analysis, and solution design, equipped with skills for conducting thorough investigations to solve complex challenges.

PO2. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO3. Societal and Environmental Responsibility

Apply contextual knowledge to evaluate societal, health, safety, legal, and cultural issues, while understanding the impact of engineering solutions on the environment and advocating for sustainable development.

PO4. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO5. Effective Communication and Team Collaboration

Excel in both individual and team roles within diverse and multidisciplinary settings, while communicating complex engineering concepts clearly through effective reports, presentations, and interactions.

PO6. Project management

Apply engineering and management principles to lead and manage projects effectively in computer science and engineering contexts.

PO7. Life-long learning: Embrace and actively pursue continuous learning to stay current with technological advancements and evolving practices in computer science and engineering.

6.4 **Programme Specific Outcomes (PSO)**

PSO1: Understanding the core concepts, theories, tools, techniques, and methodologies of Artificial Intelligence and Data Science.

PSO2: Applying AI and Data Science principles to solve real-world problems and make data-driven decisions.

PSO3: Analyzing data and AI methodologies to uncover insights and address challenges.

PSO4: **Evaluating** and optimizing AI models and data solutions for enhanced performance.

PSO5: Designing and **developing** innovative AI and Data Science solutions to tackle complex problems.

6.5 Career Avenues

Graduates of the BCA program have a wide array of career opportunities, including:

- 1. **Software Developer**: Design, code, and maintain software across various domains such as web, mobile, game, and enterprise applications.
- Systems Analyst: Evaluate and enhance organizational computer systems, design new solutions, and optimize existing processes for improved efficiency.
- 3. **Data Scientist**: Analyze large datasets, apply statistical methods and machine learning, and develop predictive models to drive data-informed decisions.

- 4. **AI Engineer**: Develop and implement AI algorithms, including natural language processing, computer vision, and other intelligent systems.
- 5. **Cybersecurity Analyst**: Protect systems and data by identifying vulnerabilities, implementing security measures, and responding to security incidents.
- 6. **Network Engineer**: Design, deploy, and maintain reliable and secure network infrastructures, and troubleshoot network issues to ensure optimal performance.
- 7. **IT Project Manager**: Oversee technology projects from planning to execution, manage teams, coordinate resources, and ensure timely and budget-compliant delivery.
- 8. **Database Administrator**: Maintain database systems, ensure data integrity and security, and optimize performance for efficient data management.
- 9. **Quality Assurance Engineer**: Test and ensure the reliability and functionality of software applications by developing test plans, identifying issues, and collaborating with development teams.
- 10. **Research and Development**: Engage in cutting-edge research, explore emerging technologies, and contribute to innovation in academia, industry labs, or R&D departments.

6.5 Duration

BCA: 3 years/BCA Honors with Research: 4 Years (Full-Time)

6.6 Eligibility Criteria

The candidate should have passed 10+2 or its equivalent examination from a recognized Board with a minimum of 50% marks in aggregate. The reservation and relaxation for SC/ST/OBC/PWD and other categories shall be as per the rules of central/state government, whichever is applicable.

7. Student's Structured Learning Experience from Entry to Exit in the Programme

7.1 University Education Objective

• Focus Employability and Entrepreneurship through Holistic Education

7.2 Importance of Structured Learning Experiences

• Holistic and Structured Academic Journey: The curriculum focuses on employability, entrepreneurship, and personal development through a balanced education that integrates major/minor selection, internships, projects, coding and hands-on industry experience.

• Comprehensive Learning and Support: Students benefit from experiential learning through labs, workshops, and guest lectures, while academic support, mentor-mentee programs, and counselling services cater to the needs of both slow and advanced learners.

• Continuous Evaluation and Growth: A robust assessment framework with regular feedback, emphasis on academic integrity, and structured evaluation methods ensures ongoing student development and success.

7.3 Educational Planning and Execution

Effective educational planning and execution is a cornerstone of delivering a highquality academic experience. At the School of Engineering & Technology, we focus on a structured and dynamic approach to ensure that students gain the knowledge, skills, and competencies required to excel in the rapidly evolving technological landscape. Our planning and execution encompass the following key aspects:

• **Curriculum Design:** The curriculum is meticulously crafted, aligning with global standards and the National Education Policy (NEP) 2020. It integrates theoretical learning with practical application, focusing on interdisciplinary knowledge, skill development, and the latest trends in technology, such as AI and ML, Cybersecurity, Full Stack and Data Science etc

• **Learning Objectives:** Each course is designed with clear learning outcomes to ensure students understand the relevance of their education to real-world applications. The focus is on building foundational knowledge while advancing to specialized skills that enhance employability and entrepreneurship. • **Academic Scheduling:** A well-structured academic calendar is developed, ensuring a balanced distribution of coursework, projects, internships, and examinations. Students are guided in course registration, ensuring a smooth academic journey through carefully timed assessments, practical experiences, and project work.

• **Project-Based Learning:** We emphasize experiential and project-based learning to foster critical thinking, problem-solving, and innovation. Through real-world projects, Internships, contests and collaborative opportunities, students gain practical insights into engineering challenges.

• **Continuous Evaluation:** An ongoing evaluation system is employed with periodic assessments, ensuring continuous learning and improvement. The system includes practical exams, theoretical assessments, internships, and project evaluations, providing a holistic view of student progress. Through strategic educational planning and precise execution, we ensure that our students graduate with the skills and knowledge required to meet the demands of industry and society.

7.4 Academic Journey

7.5 Curriculum Structure and Degree Requirements

The B.Tech Computer Science & Engineering (CSE) program at the School of Engineering & Technology offers a comprehensive, structured curriculum designed to meet the demands of the rapidly evolving field of computer science. The program is spread across eight semesters, balancing foundational knowledge, advanced topics, practical skills, and interdisciplinary learning. The total credit requirement for the B.Tech CSE program is **168 credits**.

Course Categories and Credit Distribution:

- Ability Enhancement Courses (AEC) 9 credits
 Courses focused on enhancing students' communication skills, critical thinking,
 and other fundamental abilities required for academic and professional success.
- 2. Audit Courses 0 credits

Four non-credit audit courses focused on Competitive Programming, providing

students with the opportunity to sharpen their coding skills through regular practice and participation in coding challenges, helping them excel in technical interviews and competitions like ACM ICPC.

3. Internships – 6 credits

Hands-on industry experience is integral to the curriculum, with mandatory internships helping students apply theoretical knowledge to real-world scenarios.

4. Major Courses – 88 credits

Core technical courses in computer science that cover essential topics such as programming, data structures, algorithms, databases, operating systems, networking, AI, machine learning, and cybersecurity.

5. Minor Courses – 20 credits

Elective courses that allow students to specialize in areas outside their major, encouraging interdisciplinary knowledge and flexibility in learning.

6. Open Electives – 9 credits

Courses from other disciplines offered to provide students with an opportunity to explore subjects of interest beyond computer science.

- Skill Enhancement Courses (SEC) 10 credits
 Practical and hands-on courses focused on specific skills, including programming languages, software development, and other technical proficiencies.
- 8. Projects (PROJ) 18 credits

A substantial component of the curriculum dedicated to individual and group projects, ensuring students gain practical problem-solving experience and engage in innovation.

9. Value-Added Courses (VAC) – 8 credits

Courses aimed at holistic development, focusing on ethics, social responsibility, entrepreneurship, and leadership skills.

Course category	Credits
AEC	9
AUDIT	0

Internship	6
Major	88
Minor	20
Open Elective	9
SEC	10
PROJ	18
VAC	8

Program	Ι	II	III	IV	V	VI	VII	VIII	
BCA (AI & DS) -3Yr	24	23	22	25	23	17	-	I	134
BCA (AI & DS) -4Yr (Honors with Research)	24	23	22	25	23	17	17	12	163

7.6 Course Registration and Scheduling

7.6.1 Major and Minor Selection

In the B.C.A. program, students have the opportunity to specialize in their field through Major and Minor selections, which allow them to tailor their academic journey according to their interests and career aspirations.

The Major component comprises core Computer Science and Engineering courses, providing a strong foundation in fundamental concepts such as algorithms, data structures, software engineering, and computer networks.

For the Minor component, students can choose from department-specific electives offered in four cutting-edge domains: Artificial Intelligence, Full Stack Development (FSD), Cyber Security, and Cloud Computing. This flexibility empowers students to

gain specialized knowledge and skills in areas of their choice, enabling them to pursue diverse career paths or advanced studies in these high-demand fields. The Minor selection allows students to complement their major coursework with focused expertise, preparing them for dynamic roles in the evolving tech industry.

7.6.2 Internships/Projects/Dissertations/Apprenticeships

In alignment with our commitment to providing practical, hands-on experiences that complement academic learning, our curriculum incorporates a range of internships, projects, and other experiential learning opportunities. These components are designed to enhance students' skills, apply theoretical knowledge in real-world settings, and prepare them for successful careers in engineering and technology. Below is an overview of the related courses offered:

1. Summer Internships: Summer internships are integrated into our curriculum at various stages to ensure students gain relevant industry experience. These internships are structured as follows:

- ENSI251: Summer Internship I (2 Credits)
- Objective: To provide students with their first exposure to a professional work environment, where they can apply fundamental concepts learned in their coursework.
- **Duration:** Summer term, typically spanning 6-8 weeks.
- Focus: Gaining initial industry experience, understanding professional practices, and developing workplace skills.
- ENSI351: Summer Internship II (2 Credits)
- **Objective:** To deepen students' industry experience by engaging them in more complex tasks and projects.
- **Duration:** Summer term, typically spanning 6-8 weeks.
- **Focus:** Applying advanced concepts and techniques, participating in meaningful projects, and refining technical and soft skills.
- ENSI451: Summer Internship III (2 Credits)

- **Objective:** To further advance students' practical knowledge and skills by immersing them in high-impact projects and professional challenges.
- **Duration:** Summer term, typically spanning 6-8 weeks.
- **Focus:** Taking on significant responsibilities, contributing to substantial projects, and preparing for career readiness.
- **2. Minor Projects:** Minor projects offer students the opportunity to engage in focused, short-term projects that emphasize application of core concepts in practical scenarios:
- ENSI152: Minor Project-I (2 Credits)
- **Objective:** To introduce students to project-based learning, where they work on small-scale projects that require application of fundamental principles.
- **Focus:** Developing project planning, execution, and presentation skills.
- ENSI252: Minor Project-II (2 Credits)
- **Objective:** To build on the skills acquired in Minor Project-I, with increased complexity and scope.
- Focus: Enhancing problem-solving abilities, project management skills, and technical proficiency.
- ENSI352: Minor Project-III (2 Credits)
- **Objective:** To further advance students' project work by involving them in more complex and multi-disciplinary projects.
- **Focus:** Integrating diverse concepts, collaborating with peers, and presenting findings.
- **3. Industrial Project/R&D Project/Start-up Project:** This capstone project is designed for students to engage in extensive, real-world problem-solving in a professional context:
- ENSI452: Industrial Project/R&D Project/Start-up Project (12 Credits)
- **Objective:** To provide a comprehensive, in-depth project experience in collaboration with industry partners, research institutions, or start-ups.
- Focus: Addressing complex engineering problems, engaging in innovative research, or contributing to entrepreneurial ventures. This project requires a significant time commitment and culminates in a detailed report and presentation.

These experiential learning components are integral to our educational philosophy, ensuring that students not only acquire theoretical knowledge but also develop practical skills and gain valuable industry experience. Our structured approach to internships and projects prepares students to meet the demands of the engineering profession and excel in their future careers.

7.6.3 Academic Support Services (Slow & Advanced Learners)

Identifying slow and advanced learners is crucial for providing personalized and effective education. By assessing students' performance through mid-term evaluations and internal assessments, institutions can tailor support to meet individual learning needs. Slow learners benefit from remedial classes, extra assignments, and personalized attention, helping them bridge knowledge gaps and progress academically. Meanwhile, advanced learners are offered opportunities for academic enrichment, including participation in technical events, research projects, and career counseling. This structured approach ensures holistic development, fosters individual growth, and enhances overall academic performance.

Mechanism for identifying slow and advanced learners

- > **Mid-term Evaluation**: Conduct mid-term exams with a weightage of 20%.
- Assessment of Learning Levels: Evaluate students based on their performance in the mid-term and other internal assessments.

> Slow Learners Identification:

- If a student's marks are **≤55%**, they are categorized as slow learners.
- Remedial support includes additional classes, extra assignments, and notes.
- > Advanced Learners Identification:
- If a student's marks are ≥80%, they are categorized as advanced learners.
- They are provided with opportunities for career counseling, participation in technical events, and advanced courses.

7.7 Student Support Services

- Mentor-Mentee
- Counselling and Wellness Services
- Career Services and Training

7.8 Learning and Development Opportunities

- Laboratories and Practical Learning
- Experiential Learning
- Case-Based Learning/Problem-Based Learning/Project Based Learning
- Workshops, Seminars, Guest Lectures
- Inside & Outside Classroom Learning
- Holistic Education

7.9 Assessment and Evaluation

7.9.1 Grading Policies and Procedures for theory courses, practical courses, projects, Internships, Dissertation

Theory Courses:

Grading for theory courses is based on a comprehensive evaluation scheme designed to assess both continuous performance and final examination results. The assessment is divided as follows:

Continuous Assessment (30 Marks): Includes diverse components such as project work, quizzes, assignments, essays, presentations, participation, case studies, and reflective journals. These components are evenly spaced throughout the semester to gauge ongoing student performance.

Mid-Term Exam (20 Marks): A formal examination conducted midway through the semester to assess understanding and retention of the material covered up to that point.

End-Term Examination (50 Marks): A comprehensive exam covering the entire syllabus, designed to evaluate students' overall understanding and application of the course content.

Practical Courses:

Practical assessments focus on the students' ability to apply theoretical knowledge to practical tasks. The evaluation components include:

Conduct of Experiment (10 Marks): Assessment of the student's practical skills and ability to follow experimental procedures.

Lab Records (10 Marks): Evaluation of the completeness and accuracy of lab documentation.

Lab Participation (10 Marks): Involvement and engagement in laboratory activities.

Lab Project (20 Marks): Performance and results of a project-based laboratory assignment.

End-Term Practical Exam and Viva Voce (50 Marks): A comprehensive practical examination and oral assessment to evaluate the application of lab skills and theoretical knowledge.

Note: Students must secure at least 40% in both internal and external components (theory and practical) to pass the course.

7.9.2 Feedback and Continuous Improvement Mechanisms (*Details to be provided by school*)

Feedback is integral to fostering continuous improvement and enhancing the learning experience. Our feedback mechanisms include:

- Student Feedback Surveys: Regular surveys to collect student opinions on course content, teaching methods, and overall learning experience.
- Peer Reviews: Evaluation of teaching practices by peers to ensure adherence to educational standards and continuous improvement.

- Faculty Reviews: Periodic reviews of faculty performance based on feedback and assessment outcomes to support professional development.
- Continuous improvement is driven by analysing feedback, implementing necessary changes, and reviewing the effectiveness of modifications.

7.9.3 Academic Integrity and Ethics

Upholding academic integrity and ethical standards is crucial in maintaining the quality of education. Our policies include:

- Cheating Prevention: Procedures to prevent and address cheating during exams and assignments.
- Ethical Conduct: Clear guidelines on academic conduct and ethics, with emphasis on honesty and responsibility in all academic work.

7.9.4 Examination and Evaluation Methods (*Details to be provided by school*)

- Our examination and evaluation methods ensure a fair and comprehensive assessment of student performance:
- Theory Examinations: A mix of continuous assessments and formal exams to evaluate students' understanding and application of course material.
- Practical Examinations: Assessment of hands-on skills and practical knowledge through lab experiments and projects.
- ICT Tools: Utilization of Moodle LMS and interactive teaching boards to support teaching and assessment, providing students with access to course materials, assignments, and feedback.

Evaluation Components:

- Lecture PPTs and Video Lectures: Used to deliver course content and reinforce key concepts.
- Problem-Based and Project-Based Assignments: Encourage practical application of theoretical knowledge and critical thinking.
- Question Banks and Model Papers: Provide practice and preparation for exams.
- Continuous Assessment and Support: Regular assessments and feedback to monitor and support student progress throughout the semester.
- These evaluation methods are designed to provide a holistic assessment of students' knowledge and skills, ensuring they meet the required learning outcomes and standards.

Semester I (Odd Semester)

			ODD S	SEMESTER					
Year	SN	Category	Course Code	Course Title	L	Т	Ρ	С	
	1	Major	ENCA101	Web Designing Using HTML,CSS, Java Script & PHP	4	0	-	4	
	2	Major	ENMA103	Basics of Mathematics		1	-	4	
	3	Minor	ENSP101	Clean Coding with Python	4	0	0	4	IBM
	4	Major	ENCA103	Essentials of Software Engineering	3	1	0	4	
ar	4	Major	ENCA151	Web Design Lab		-	2	1	
First Year	5	Minor	ENSP151	Clean Coding with Python Lab	0	0	2	1	IBM
Fi	6	VAC- I		Environmental Studies & Disaster Management (Online Moodle)	2	_	-	2	
	7	Major	ENCA153	Essentials of Software Engineering Lab	0	0	1	2	
	8	SEC	SEC037	Data Visualization using Power BI	0	0	4	2	Sama trix
	TOTAL						9	24	

Note:

- 1. Students who wish to exit after the first two semesters must complete a 4-credit work-based learning/internship during the summer term to qualify for a UG Certificate.
- **2.** Students who choose to exit after one year will earn an Undergraduate Certificate in Computer Applications.

Semester II (Even Semester)

		E	VEN SEMESTER					
SN	Category	Course Code	Course Title	L	Т	Ρ	С	
1	Major	ENCA102	Fundamentals of Object Oriented Programming using C++	3	1	-	4	
2	Major	ENCA104	Discrete Structure	3	1	-	4	
3	Minor	ENSP102	Overview of AI, Data Science, Ethics and Foundation of Data Analysis	4	0	0	4	Samatrix
4	SEC	SEC039	R Programming for Data Science and Data Analytics Lab	0	0	4	2	Samatrix
5	Major	ENCA152	Object Oriented Programming Lab using C++	-	-	2	1	
6	Minor	ENSP152	Overview of AI, Data Science, Ethics and Foundation of Data Analysis Lab	0	0	2	1	Samatrix
7	Open Elective		Open Elective -I	3	-	-	3	
8	VAC II	ENCA202	Extention Activities(community engagement service)	2	-	-	2	
9	Proj	ENSI152	Minor Project-I	-	-	-	2	
	TOTAL 15 2 8 23							

Note:

1. The marks for the Minor Project (ENS152) will be allocated solely through internal evaluation, with a total of 100 marks. There will be no end-term exams for this project.

2. Students must enroll in one of the several Value-Added Courses (VAC) provided by the School of Engineering & Technology. This elective will culminate in an end-term examination worth 100 marks

3. For the "Minor Project," students will undergo internal evaluation, which will be graded on a scale of 100 marks.

SN 0	Catego ry	Course Code	Course Title	L	т	Ρ	С	
1	Major	ENCA2 01	Fundamentals of Data Structures	3	1	0	4	
2	Major	ENCA2 03	Fundamentals of Java Programming	3	1	0	4	
3	Minor	ENSP2 05	Probabilistic Modelling and Reasoning	0	0	4	2	Samatr ix
4	Major	ENCA2 51	Fundamentals of Java Programming Lab	0	0	2	1	
5	Major	ENCA2 53	Fundamentals of Data Structures Lab	0	0	2	1	
6	Open Electiv e		Open Elective -II	3	0	0	3	Open Electiv e
7	VAC		VAC III	2	0	0	2	
8	AEC	AEC01 1	Life Skills for Professionals-I	3	0	0	3	
9	INT		Summer Internship-I	0	0	0	2	
11	AUDIT		Competitive Coding Bootcamp- I	3	-	-	0	
-								
			TOTAL	1 7	2	8	2 2	

Semester III (Odd Semester)

Note:

- 1. Students on exit after Two years will earn undergraduate diploma program in Computer Applications.
- 2. Students have the option to enroll in one of the Value-Added Courses (hands-on courses) offered at the school level. This elective course will conclude with an end-term examination worth 100 marks.
- 3. Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted

Code	COURSE TITLE	L	т	Р	С
VAC170	Design thinking & Innovations for Engineers	-	-	-	2
VAC171	AWS Cloud Fundamentals	-	-	-	2
VAC172	Web Development with open source Frameworks	-	-	-	2
VAC173	Google Data Analytics	-	-	-	2
VAC174	Software Testing using Open Source Frameworks	-	-	-	2
VAC175	Database Management with Open Source Frameworks	-	-	-	2
VAC176	Cyber Security with Open source Frameworks	-	-	-	2

Semester IV (Even Semester)

SN 0	Catego ry	Course Code	Course Title	L	т	Ρ	С	
1	Major	ENCA20 2	Fundamentals of Operating Systems	3	1	-	4	
2	Major	ENCA20 4	Fundamentals of Database Management Systems	3	1	0	4	
3	Minor	ENSP21 2	Foundation of Machine Learning	4	0	0	4	Samatr ix

4	Major	ENCA25 2	Fundamentals of Operating System Lab	-	-	2	1	
5	Minor	ENSP26 2	Foundation of Machine Learning Lab	0	0	2	1	Samatr ix
6	Major	ENCA25 4	Fundamentals of Database Management Systems Lab	0	0	2	1	
7	Minor	ENSP35 9	Big Data Analysis with Scala and Spark Lab	-	-	4	2	IBM
8	Open Elective		Open Elective -III	3	0	0	З	
9	AEC	AEC012	Life Skills for Professionals-II	3	0	0	3	
10	PROJ	ENSI25 2	Minor project-II	0	0	0	2	
11	AUDIT		Comprehensive Placement Preparation -II	2	-	-	0	
	TOTAL						2 5	

Note: For the "Minor Project," students will undergo internal evaluation, which will be graded on a scale of 100 marks.

• Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted

SN	Category	Course Code	Course Title	L	Т	Ρ	С	
1	Major	ENCA301	Design and Analysis of Algorithms	3	1	-	4	
2	Major	ENCA302	Introduction to Computer Organization & Architecture	3	1	0	4	
3	Minor	ENSP302	Introduction to Natural Language Processing	4	-	-	4	Samatrix
4	SEC	SEC040	Data Science - Tools and Techniques Lab	0	0	4	2	Samatrix

Semester V (Odd Semester)

5	AEC	AEC013	Life Skills for Professionals-III	3	0	0	3	
7	Major	ENCA351	Design & Analysis of Algorithms Lab	-	-	2	1	
8	Minor	ENSP352	Natural Language Processing Lab	-	-	2	1	Samatrix
9	INT	ENSI251	Summer Internship-II	-	-	-	2	
10	VAC	VAC IV	Comprehensive Placement Preparation Boot Camp*	-	-	-	2	
	TOTAL				2	8	23	

Note:

- Students will be required to undergo a specialized placement preparation boot camp program offered by the CDC/School in a hybrid mode. No end-term exams will be conducted; instead, internal evaluations will be carried out, with a total of 100 marks. The modules will focus on preparing students for technical interviews, coding questions, aptitude and soft skills, and mock interviews.
- 2. For the "Summer Internship," students must complete a 6-week internship during the summer and submit a completion certificate. The evaluation will take place during the 5th semester and will be graded on a scale of 100 marks.

SN	Category	Course Code	Course Title	L	т	Ρ	С	
1	Minor		Discipline Specific Elective I	4	-	-	4	
2	Major	ENCA304	Introduction to Computer Networks	3	1	-	4	
3	Major	ENCA306	Basics of Neural Networks and Deep Learning	4	-	1	4	Samatrix
4	Minor		Discipline Specific Elective I Lab	-	-	2	1	
5	Major	ENCA352	Computer Networks Lab	-	-	2	1	

Semester VI (Even Semester)

6	Major	ENCA354	Neural Networks and Deep Learning Lab	-	-	2	1	Samatrix
7	VAC	VAC IV	Career Readiness Boot Camp	-	-	-	2	
8	Proj	ENSI352	Minor Project-III				2	
	TOTAL			11	1	6	19	

Note:

- **1.** Students on exit after Three years will earn the degree of **Bachelor of Computer Applications with Specialization in AI & Data Science.**
- 2. For the "Minor Project," students will undergo internal evaluation, which will be graded on a scale of 100 marks.
- 3. Students can choose any of the following electives:

		Discipline S	pecific Elective - I (Artificial Intelligence)				
()	Minor	ENSP304	Image Processing & Computer Vision	4	-	-	4
(ii)	Minor	ENSP354	Image Processing & Computer Vision lab	-	-	2	1
(iii)	Minor	ENSP306	Introduction to Generative AI	4	-	-	4
(iii)	Minor	ENSP356	Generative AI lab	-	-	2	1
(;;;)	Minor	ENSP308	Transfer Learning	4	-	-	4
(iii)	Minor	ENSP358	Transfer Learning lab	-	-	2	1

Semester VII (Odd Semester)

SNo	Category	Course Code	Course Title	L	Т	Р	С
1	Minor		Discipline Specific Elective -II	4	-	-	4
2	Minor		Discipline Specific Elective - III	4	-	-	4
3	Minor		Discipline Specific Elective -II Lab	-	-	2	1
4	Minor		Discipline Specific Elective III Lab	-	-	2	1
5	INT	ENSI451	Summer Internship-III	2	-	-	2
			TOTAL	10	0	4	12

- 1. For the "Summer Internship," students must complete a 6-week internship during the summer and submit a completion certificate. The evaluation will take place during the 7th semester and will be graded on a scale of 100 marks.
- 2. Students can choose among the following department electives:

	Discipline Specific Elective - II (Cloud Computing)											
(i)	Minor	ENSP401	Computational Services in The Cloud	4	-	1	4					
(1)	Minor	ENSP451	Computational Services in The Cloud Lab	-	-	2	1					
(;;)	Minor	ENSP403	Microsoft Azure Cloud Fundamentals	4	-	1	4					
(ii)	Minor	ENSP453	Microsoft Azure Cloud Fundamentals Lab	-	-	2	1					
(iii)	Minor	ENSP405	Storage and Databases on Cloud	4	-	1	4					

	Minor	ENSP455	ENSP455 Storage and Databases on Cloud Lab		-	2	1
(iv)	Minor	ENSP407	Application Development and DevOps on Cloud	4	-	1	4
	Minor	ENSP457	Application Development and DevOps on Cloud Lab	-	-	2	1

	Discipline Specific Elective - III (Full Stack Development)										
	Minor	ENSP409	Mobile Application Development using iOS	4	-	-	4				
(i)	Minor	ENSP459	Mobile Application Development using iOS Lab	-	-	2	1				
(ii)	Minor	ENSP411	DevOps & Automation	4	-	-	4				
(ii)	Minor	ENSP461	DevOps & Automation Lab	-	-	2	1				
(;;;;)	Minor	ENSP413	.Net FRAMEWORK	4	-	-	4				
(iii)	Minor	ENSP463	.Net FRAMEWORK Lab	-	-	2	1				
(iv)	Minor	ENSP415	New Age Programming languages	4	0	0	4				
(iv)	Minor	ENSP465	New Age Programming languages Lab	0	0	2	1				

Semester VIII (Even Semester)

SN	Category	Course Code	Course Title	L	Т	Ρ	С
1	PROJ	ENSI452	Industrial Project/R&D Project/Start- up Project	I	I	-	12
	TOTAL						12

Note:

- On completion of four years, students will be eligible to get the degree of Bachelor of Computer Applications (Honors with Research) with Specialization in AI & Data Science.
- 2. Students are required to undertake a full-time industry internship for the entire semester. They are not permitted to enroll in any courses as an alternative to the internship. Students can choose from the following internship options:
- Industry project
- Research & Development project
- Start-up project

Evaluation will be based on internal assessments, with no end-term exams applicable.

List of Subjects	supported	by Industry
-------------------------	-----------	-------------

Sem	Туре	Code	Subject	L	т	Ρ	С	
I	Minor	ENSP101	Clean Coding with Python	4	0	0	4	IBM
Ι	Minor	ENSP151	Clean Coding with Python Lab	0	0	2	1	IBM
II	Minor	ENSP102	Overview of AI, Data Science, Ethics and Foundation of Data Analysis	4	0	0	4	Samatrix
II	Minor	ENSP152	Overview of AI, Data Science, Ethics and Foundation of Data Analysis Lab	0	0	2	1	Samatrix
III	Minor	ENSP205	Probabilistic Modelling and Reasoning	-	-	4	2	Samatrix
IV	Minor	ENSP212	Foundation of Machine Learning	4	-	-	4	Samatrix
IV	Minor	ENSP262	Foundation of Machine Learning lab	-	-	2	1	Samatrix
IV	Minor	ENSP359	Big Data Analysis with Scala and Spark Lab	-	-	4	2	IBM
V	Minor	ENSP302	Natural Language Processing	4	-	-	4	Samatrix
V	Minor	ENSP352	Natural Language Processing Lab	-	-	2	1	Samatrix
V	SEC	SEC040	Data Science - Tools and Techniques Lab	0	0	4	2	Samatrix
VI	Minor	ENCA306	Basics of Neural Networks and Deep Learning	4	-	-	4	Samatrix
VI	Minor	ENCA354	Neural Networks and Deep Learning Lab	-	-	2	1	Samatrix
VI	PROJ	ENSI451	Project & Case Studies by Samatrix	-	-	-	2	Samatrix

20 0 22 33

CREDIT DISTRIBUTION SUMMARY

Program	Ι	II	III	IV	V	VI	VII	VIII	
BCA (AI & DS) -3Yr	24	23	22	25	23	19	-	-	136
BCA (AI & DS) -4Yr (<mark>Honors with Research</mark>)	24	23	22	25	23	19	12	12	160

Evaluation Scheme (Theory):

Evaluation Components	Weightage
Internal Marks (Theory)	
Continuous Assessment (30 Marks)	
(All the components to be evenly	
spaced)	
Project/ Quizzes/ Assignments and Essays/	
Presentations/ Participation/ Case	
Studies/ Reflective Journals (minimum of	
five components to be evaluated)	30 Marks
Internal Marks (Theory) – Mid Term	20 Marks
Exam	
External Marks (Theory): -	50 Marks
End term Examination	
Total	100 Marks

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Examination separately to secure minimum passing grade).

Evaluation Scheme (Laboratory):

Evaluation Components	Weightage
Internal Marks (Practical) –	
Conduct of Experiment	10 Marks
Lab Records	10 Marks
Lab Participation	10 Marks
Lab Project	20 Marks
External Marks (Practical): -	50 Marks
End term Practical Exam and Viva Voce	

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Practical Exam and Viva Voce separately to secure minimum passing grade).

Syllabus

Semester: 1

Web Designing Using HTML, CSS, Java Script & PHP

Program Name	Bachelor in Computer Applications (BCA)			
Course Name: Web Designing Using	Course Code	L-T-P	Credits	
HTML,CSS, Java Script & PHP	ENCA101	4-0-0	4	
Type of Course:	Major		·	
Pre-requisite(s): NA	-			

Course Perspective: The "Web Designing Using HTML, CSS, JavaScript, and PHP" course covers essential web design and development skills. It begins with HTML, teaching document structure, tags, and text formatting. Next, CSS is introduced, covering selectors, styling text, backgrounds, colors, and fonts. Students then learn JavaScript, focusing on variables, data types, conditional statements, loops, functions, events. The PHP unit covers server-side scripting, including syntax, variables, form handling, file operations, and database integration using MySQL. The final unit involves a comprehensive web design project. This syllabus equips students with the skills to create visually appealing and interactive websites.

The Course Outcomes (COs): On completion of the course the participants will be:

CO 1	Grasp clear understanding of the fundamental concepts and principles of web designing using HTML, CSS, JavaScript, and PHP.
CO 2	Apply appropriate strategies and techniques to solve web design problems using HTML, CSS, JavaScript, and PHP
СО З	Design ideas and concepts effectively through the implementation of HTML, CSS, JavaScript, and PHP in web design projects.
CO 4	Analyze the different components and elements required for effective web design, including HTML structure, CSS styles, JavaScript functions, and PHP scripts
CO 5	Develop visually appealing and responsive web pages using HTML, CSS, JavaScript, and PHP, considering user experience and accessibility

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to HTML (Hypertext Markup Language) and CSS	No. of hours: 10			
documents HTML t	HTML: Hypertext Markup Language, Bas ags and elements , Text formatting and I CSS : Cascading Style Sheets, Int electors Styling text and backgrounds Wo	inks , Images ernal, External and			
Unit Number: 2	Title: Advanced HTML and CSS	No. of hours: 10			
Content:					
Advanced HTML and CSS : HTML forms and input elements, HTML tables, CSS layout techniques, Box model and positioning Responsive design principles, CSS					

transitions and animations, Working with media (images, audio, and video)

Unit Number: 3

Title: JavaScript Fundamentals

No. of hours: 10

Content:

JavaScript Fundamentals: Introduction to JavaScript, JavaScript variables and data types, Java operators, Conditional statements and loops, JS Functions and events, JavaScript Arrays, DOM, Data Validation using JS, Accessing and modifying HTML elements.

Unit Number: 4	Title: Dynamic Web Development with PHP	No. of hours: 10
-----------------------	---	------------------

Content:

Dynamic Web Development with PHP: Introduction to server-side scripting, PHP syntax and variables, PHP data types, working with forms and user input, Handling files and directories, working with databases (MySQL), Database connections and queries, Inserting, updating, and retrieving data

References

JavaScript and JQuery: Interactive Front-End Web Development" by Jon Duckett B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd., 2008.

Additional Readings

1. Codecademy Web Development Skill Path: https://www.codecademy.com/learn/paths/webdevelopment

2. FreeCodeCamp Responsive Web Design Certification: https://www.freecodecamp.org/learn/responsive-web-design/

3. Codecademy Web Development Skill Path: https://www.codecademy.com/learn/paths/webdevelopmentL.

Web Designing Using HTML, CSS, Java Script & PHP Lab

Program Name	Bachelor in Computer Applications (BCA)			
Course Name:	Course Code	L-T-P	Credits	
Web Designing Using HTML, CSS, Java Script & PHP Lab	ENCA151	0-0-2	2	
Type of Course:	Major			
Pre-requisite(s), if any: Basic are recommended pre-requisites f	•	arity with H	TML and CSS	

Defined Course Outcomes

COs	
CO 1	Ability to Design and Implement Interactive Web Elements.
CO 2	Develop Problem-solving and Critical Thinking Skills.
CO 3	Application of Web Development Concepts
CO 4	Develop effective Collaboration and Communication Skills.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Creating a Basic HTML Page: Learn to create a simple HTML page with headings, paragraphs, and basic elements.	CO 2
2	CSS styling sheets: Create a web page to differentiate the use of internal, external and Embedded Styling sheets.	CO 1
3	Styling with CSS: Apply CSS styles to enhance the appearance of HTML elements, such as fonts, colors, and backgrounds	CO 1
4	Designing a Web Page: Working with Frames.	CO 1
5	Designing a Web Page: Working with Images and Hyperlinks.	CO 3
6	Create HTML table: Create a Table using HTML and CSS properties like border, outline, and margin.	CO 3
7	Create Lists: Create a webpage using lists in HTML and CSS properties.	CO 2
8	Responsive Web Design: Design a responsive webpage that adjusts its layout based on different screen sizes using media queries.	CO 3
9	Image Gallery: Develop an image gallery using HTML and CSS, with features like thumbnails and light box effects.	CO 1
10	Create Form: Design a form in a web page using HTML & CSS properties.	CO 2
11	Form Validation: Use JavaScript to validate form inputs, such as required fields, email format, and password strength.	CO 3
12	Implementing data types, variables, expression, and operator in JavaScript.	CO 3
13	Use of conditional statements & looping statements in Java Script.	CO 1

-		,
14	Write a JavaScript Program to check whether the given positive number is a multiple of 3.	CO 3
15	JavaScript Operators: Write a JavaScript program to calculate multiplication and division of two numbers.	CO 2
16	JavaScript Arrays: Write a JavaScript program to compute the sum of elements of given array of integers.	CO 3
17	Dropdown Menus: Design dropdown menus using HTML, CSS, and JavaScript to provide a hierarchical navigation structure.	CO3
18	Introduction to PHP: Learn the basics of PHP and create a simple PHP script to display dynamic content on a webpage.	CO 4
19	Database Connectivity: Connect PHP with a MySQL database to retrieve and display data on a webpage.	CO 4
20	User Registration and Login System: Implement a user registration and login system using PHP and MySQL.	CO 4
21	Addition Operations: Perform addition operations using PHP and MySQL to manage database records.	CO 4
22	Retrieve/View Operations: Perform Retrieve/View Operations using PHP and MySQL to manage database records.	CO 4
23	Delete Operation: Perform delete operations using PHP and MySQL to manage database records.	CO 3
24	Update Operation: Perform update operations using PHP and MySQL to manage database records.	CO 3
25	Content Management System (CMS): Build a simple CMS using PHP and MySQL to manage website content dynamically.	CO 4
26	Website Deployment: Learn how to deploy a web project on a server, configure domain and hosting settings, and make the website live on the internet.	CO 3 CO
		CO 3, CO 4

Basics of Mathematics

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Basics of Mathematics	ENMA103	3-1-4	4
Type of Course:	Major Course		
Pre-requisite(s), if any: None			

Course Perspective:

The basics of mathematics course plays a crucial role in laying down foundational knowledge essential for students specializing in computer science. Covering topics such as number systems, algebra, discrete mathematics, logic, and Boolean algebra, the course aims to equip students with the mathematical tools necessary for problem-solving in programming, algorithm design, and data analysis. Understanding number systems like binary and hexadecimal is vital for comprehending how computers process information, while discrete mathematics provides the framework for studying algorithms and data structures. Additionally, logic and Boolean algebra are fundamental in designing logical circuits and understanding the principles of computer logic. Overall, the course bridges theoretical mathematical concepts with practical applications in computer science, preparing students to tackle complex computational problems effectively.

Course Outline:

Unit Number: 1	Title: Determinants & Matrices	No. of hours: 8		
Content: Determinants: Definition, Minors, Co-factors, Properties of Determinants, Applications of determinants in finding area of triangle.				
Multiplication a	inition, Types of Matrices, Addition, nd Multiplication of Matrices, Adjoint, r equation by Cramer's Rule.	-		
Unit Number: 2	Title: Sequence and Series	No. of hours: 8		
Progression (A M. and G.M.	Sequence and Series: Introduction, Sequences, Series, Arithmetic Progression (A.P), Geometric Progression(G.P), Relationship Between A. M. and G.M., Sum to N terms of Special Series, Principle of Mathematical Induction.			
3	Title: Differentiation	No. of hours: 8		
Content: Differentiation: Derivative of a function, Derivatives of sum, differences, product, and quotient of functions, Derivative of polynomial, trigonometric, exponential, logarithmic, inverse trigonometric and implicit functions, Logarithmic Differentiation, Derivatives of functions in parametric forms, Differentiation by substitution				
differences, p polynomial, trigonometric Derivatives of	roduct, and quotient of function trigonometric, exponential, loga and implicit functions, Logarithm	ns, Derivative of arithmic, inverse ic Differentiation,		
differences, p polynomial, trigonometric Derivatives of	roduct, and quotient of function trigonometric, exponential, loga and implicit functions, Logarithm	ns, Derivative of arithmic, inverse ic Differentiation,		
differences, p polynomial, trigonometric Derivatives of substitution Unit Number:	roduct, and quotient of function trigonometric, exponential, loga and implicit functions, Logarithm functions in parametric forms,	ns, Derivative of arithmic, inverse lic Differentiation, Differentiation by		

Text Books

•A Textbook of Mathematics for XI-XII Students, NCERT Publication Vol. I-II.

• Shanti Narayan, Integral calculus, Sultan Chand & Co.

- Shanti Narayan, Differential calculus, Sultan Chand & Company.
- Babu Ram, Engineering Mathematics, Pearson Education.

CLEAN CODING WITH PYTHON

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Clean Coding with Python	ENSP101	4-0-0	4
Type of Course:	Major Course		
Pre-requisite(s), if any: None			

Course Perspective: "Clean Coding with Python" is designed to teach students the principles and practices of writing clean, maintainable, and efficient Python code. This course covers essential coding standards, best practices, and design patterns that promote readability, simplicity, and scalability in software development.

The course is structured into four comprehensive modules:

- Introduction to Python
- Python Data Structure
- Python Decorators and generators
- Python advanced modules

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Work with user input to create fun and interactive programs.

CO 2	Develop , run and manipulate Python programs using Core data structures like Lists, Dictionaries, and use of Strings Handling methods.
CO 3	Develop , run and manipulate Python programs using File Operations and searching pattern using regular expressions.
CO 4	Determine the need for scraping websites and working with CSV, JSON and other file formats.
CO 5	Create simple games with images, animations, and audio using our custom beginner-friendly programming library.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Python	No. of hours: 8				
Content:	Content:					
Python Introduction and Setup: Command Line Basics, Installation of Python. Text Editor (VS Code, PyCharm, Anaconda) Python basics and control structures: Python data types, Numbers, Variables, Getting input from the user, Operators, Statements (If, else, elif), Nested statements, Loops and loop control statements (Break, continue and pass), Strings (Indexing, slicing and formatting).						
Unit Number: 2	Title: Python Data Structure	No. of hours: 10				
Content:						
Python Data Structures: Lists, Tuples, Sets, Dictionaries. Methods and Functions: Introduction to functions, def keyword, *args and **kwargs in python, exercise on functions, Lambda expressions, Map and Filter functions.						
Unit Number: 3	Title: Python Decorators and generators	No. of hours: 10				
Content:						
Modules and Package : Installation using pip						

Errors and Exception Handling: Errors, Exceptions, Try and Except Statement,					
Catching Specific Exception, Try with else, Finally, Keyword, Raising an exception. File Handling using Python.					
Unit Number: 4	Title: Python modules	advanced	No. of hours: 10		
Content:					
Python advanced me module	odules: Datetime i	module, Math and Ran	dom module, OS		
	Regular Expressions: re module, Web Scraping using Python, Web Scraping libraries and practical implementation, Working with images using python				
Unit Number: 5	Title: Working and CSV files	with Excel sheets	No. of hours: 8		
Content :					
Python GUI programming: Tkinter, Adding Widgets, Buttons etc.SQL queries (DDL,					
DML, DCL, TCL) – Joins, Sub-Queries, Constraints and Inbuilt functions (Date, String,					
Math)Database handling in python using MySQL db, Fetching and Inserting data					
using MySQL db					

Text and Reference Book

- 1. J. Peterson, A. Silberschatz, and P. Galvin, "Operating System Concepts", Addison Wesley. 2012
- 2. V. Aho, R. Sethi, and J. D. Ullman, "Compilers: Principles, Techniques and Tools", Addison-Wesley. 2013
- 3. R. El. Masri and S. B. Navathe, "Fundamentals of Data Base Systems", Benjamin Cummings. 2013

Additional Readings:

- **R 1.** <u>https://www.tutorjoes.in/python_programming_tutorial/</u>
- R 2. <u>https://www.udemy.com/course/100-days-of-code/</u>
- **R 3.** <u>https://favtutor.com/blog-details/7-Python-Projects-For-Beginners</u>
- **R 4.** <u>https://github.com/NaviRocker/100-days-of-python</u>
- **R 5.** <u>https://hackr.io/blog/python-projects</u>

Online Learning Resources

1. Codecademy

- Offers interactive Python courses that cover basic to advanced programming concepts, including data types, control structures, functions, and object-oriented programming.
- Link: <u>Codecademy Python</u>

2. Python.org

- The official Python website provides a comprehensive beginner's guide, documentation, and tutorials to get started with Python programming.
- Link: <u>Python Beginner's Guide</u>

CLEAN CODING WITH PYTHON LAB

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Clean Coding with Python Lab	ENSP151	0-0-2	1
Type of Course:	Major		

Defined Course Outcomes

CO1	Develop solutions to simple computational problems using Python
	programs.
CO 2	Solve problems using conditionals and loops in Python. Develop Python programs by defining functions and calling them.
CO 3	Implement Python lists, tuples, and dictionaries for representing
	compound data.
CO 4	Implementation of Machine Learning Algorithms.

Proposed Lab Experiments

Experi ment No.	Experiment Title	Mapped CO/COs
1	Develop programs to understand the control structures of python	CO 1
2	Develop programs to implement list	CO 3
3	Develop programs to implement Dictionary	CO 3
4	Develop programs to implement tuples	CO 3

5	Develop programs to implement function with stress on scoping	CO 2
6	Develop programs to implement classes and objects	CO 3
7	Develop programs to implement exception handling.	CO 1
8	Develop programs to implement linear search and binary search.	CO 2
9	Develop programs to implement insertion sort	CO 2
10	Develop programs to implement bubble sort.	CO 2
11	Develop programs to implement quick sort.	CO 2
12	Develop programs to implement heap sort.	CO 2

ESSENTIALS OF SOFTWARE ENGINEERING

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Essentials of Software Engineering	ENCA103	3-1-0	4
Type of Course:	Major		
Pre-requisite(s), if any: NA			

Course Perspective: This course covers the fundamentals of software engineering, including understanding system requirements, finding appropriate engineering compromises, effective methods of design, coding, and testing, team software development, and the application of engineering tools, Requirements Engineering technique, Development of UML Diagrams, Software Architecture and Design patterns, Software Testing- Black Box and White Box, Developing Test cases using Equivalence and Boundary value partitioning techniques, Software Refactoring.

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Identify and describe different software development methodologies.
CO 2	Summarize the stages and activities involved in the software development life cycle.
СО 3	Analyze and evaluate software requirements to identify potential risks and constraints.
CO 4	Evaluate software documentation and code quality against industry standards.
CO 5	Design and develop a complex software system that meets specified requirements.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Models and SRS	No. of hours: 10
Content Summary:		

Introduction to Software Engineering: The evolving role of software, changing nature of software, Software Crisis, Software Processes & Characteristics.

Process models: The Waterfall model, Agile model, Evolutionary process model, Spiral model.

Software Requirements analysis & specifications: Requirement engineering, requirement elicitation techniques, Requirements analysis using DFD, Requirement documentation, Nature of SRS, Characteristics & organization of SRS.

_	_	
Unit	Number:	2

Content Summary:

Software Metrics: Size Metrics like LOC, Token Count, Function Count, Design Metrics, Data Structure Metrics, Information Flow Metrics. Cost Estimation Models: COCOMO, COCOMO-II.

System Design: Design Concepts, Design Specification. UML Diagrams for Structure Modeling, UML Diagrams for Behavior Modeling, UML Diagram for Implementation and deployment modeling.

Title: Software Quality Models

No. of hours: 10

Content Summary:

Software Reliability: Importance, Hardware Reliability & Software Reliability, Failure and Faults, Reliability Models, Basic Model, Logarithmic Poisson Model,

Introduction to Software Quality: Software Quality control, Quality Assurance, Software Quality Models, CMM & ISO 9001.

Unit Number: 4	Title: : Software Testing and Maintenance	No. of hours: 10

Content Summary:

Software Testing: Testing process, Design of test cases, Functional testing, Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing, Path Testing, Data flow, and mutation testing, Unit Testing, Integration and System Testing, Debugging, Alpha & Beta Testing, Testing Tools & Standards. **Software Maintenance**: Management of Maintenance, Maintenance Process, Maintenance Models, Regression Testing, Reverse Engineering, Software Re-engineering

References

- K. K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International.
- R. S. Pressman, "Software Engineering A practitioner's approach", McGraw Hill
- W.S. Jawadekar, "Software Engineering Principles and Practices", McGraw Hill
- Stephen R. Schach, "Classical & Object-Oriented Software Engineering", IRWIN, TMH.
- James Peter, W. Pedrycz, "Software Engineering: An Engineering Approach", John Wiley &
- Sons.
- Sommerville, "Software Engineering", Addison Wesley.
- K. Chandrasehakhar, "Software Engineering & Quality Assurance", BPB

Web References:

□ Software Metrics:

- Software Engineering Institute (SEI): https://www.sei.cmu.edu/
- IEEE Computer Society: <u>https://www.computer.org/</u>
- ACM Digital Library: https://dl.acm.org/

□ Cost Estimation Models:

- COCOMO:
- oOfficial COCOMO website: <u>http://csse.usc.edu/csse/research/COCOMOII/</u>
- COCOMO-II:
- COCOMO Model Definition Manual: <u>http://csse.usc.edu/csse/research/COCOMOII/cocomo_main.html</u>

System Design:

- Object Management Group (OMG) Unified Modeling Language (UML): https://www.uml.org/
- Software Architecture Documentation: https://www.softwarearchitecturebook.com/
- Design Patterns:
- Gang of Four (GoF) Design Patterns: https://refactoring.guru/design-patterns

□ Unified Modeling Language (UML) and Software Reliability:

- Official OMG UML Specification: https://www.omg.org/spec/UML/
- Software Reliability Engineering (SRE) resources: https://www.researchgate.net/topic/Software-Reliability-Engineering

□ Software Testing and Maintenance:

- International Software Testing Qualifications Board (ISTQB): <u>https://www.istqb.org/</u>
- IEEE Standard for Software Test Documentation: https://ieeexplore.ieee.org/document/1011891
- Software Maintenance:
- Software Maintenance and Evolution: A Roadmap: <u>https://ieeexplore.ieee.org/document/5460546</u>

ESSENTIALS OF SOFTWARE ENGINEERING LAB

Program Name	Bachelor in Computer Applications (BCA)			
Course Name:	Course Code	L-T-P	Credits	
Essentials of Software Engineering Lab	ENCA153	0-0-2	1	
Type of Course:	Major Course			

Proposed Lab Experiments

Defined Course Outcomes

COs	
CO 1	Apply software engineering lifecycle models and methodologies to develop and maintain software systems
CO 2	Design software development processes that align with technical understanding and meet specified requirements.

со з	Analyze software requirements using appropriate modeling techniques
05	and tools
CO 4	Develop test case specifications and implement test cases based on
0 4	given software requirements

Ex. No.	Experiment Title	Mapped CO/COs
1	Write the complete problem statement	C01
2	Write the software requirement specification document	CO1, CO3
3	Draw the entity relationship diagram	CO2, CO4
4	Draw the data flow diagrams at level 0 and level 1	CO2, CO4
5	Draw a use case diagram	CO2, CO4
6	Draw an activity diagram of all use cases.	
7	Draw a state chart diagram of all use cases	
8	Draw a sequence diagram of all use cases	CO2, CO3
9	Draw a collaboration diagram of all use cases	CO2, CO3
10	Assign objects in sequence diagram to classes and make class diagram	CO2, CO3
	Create test cases for the testing of the modules	CO1, CO5

Reference Books/Materials

- 1. Stephen R. Schach, "Classical & Object-Oriented Software Engineering", IRWIN, TMH.
- 2. James Peter, W. Pedrycz, "Software Engineering: An Engineering Approach", John Wiley & Sons.
- 3. I. Sommerville, "Software Engineering", Addison Wesley.

4. K. Chandrasehakhar, "Software Engineering & Quality Assurance", BPB

Data Visualization using Power BI

Program Name Bachelor in Computer Applications (BCA)			tions
Course Name:	Course Code	L-T-P	Credits
Data Visualization using Power BI	SEC037	0-0- 4	2
Type of Course: Minor			
Pre-requisite(s), if any: Basic knowledge of Excel & data numbers			

Course Perspective: The course on Data Visualization using Power BI provides a comprehensive understanding of how to transform raw data into meaningful insights through visual representation. It begins with the fundamentals of data visualization, emphasizing its importance in decision-making and comparing various tools, with a special focus on Power BI. Students learn to navigate the Power BI interface, connect to diverse data sources, and utilize Power Query for data transformation. The course covers creating and customizing a wide range of visualizations, including charts, maps, and tables, to effectively communicate data insights. The course is divided into 4 modules:

- a) Foundation to Data Analytics
- b) Data Science Processes
- c) Power BI Analytics
- d) Introduction to Data Manipulation Using Function
- e) Advance Function

The Course Outcomes (COs): On completion of the course the participants will be

COs	Statements
CO 1	Build data design using power BI and manage and manipulate data to extract useful information and insights.
CO 2	Apply functions to manipulate and analyze data.
CO 3	Understand different data science processes, tools and techniques
CO 4	Outline the key concepts of data handling and how data has evolved
CO 5	Identify the key concepts of data visualization using power BI and will be able to understand the dash board.
CO 6	Distinguish key Data Science concepts such as structured and unstructured data

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title:	Foundation Analytics	to Data		No. of hours: 8
		Conte	nt Summa	ry:	
Introduction	to	Data Analytics:	Working	with	Formula and Functions,
Introduction t	Introduction to Power BI & Charts, Logical functions using Excel, Analysing Datawith				
	Excel.				
Unit	Title:	Data	Science		No of hourse 9
Number: 2		Processes		No. of hours: 8	

Content Summary:

Six steps of data science processes, define research goals, data retrieval, cleansing data, and correct errors as early as possible, integrating – combine data from different sources, transforming data, exploratory data analysis, Data modelling, model and variable selection, model execution, model diagnostic and model comparison, presentation and automation.

Unit No.: 3	Title:	Power BI Analytics	No. of hours: 8	
Content Summary:				
Power BI Analytics,	Data Valida	ation & data models, P	ower Map for visualize data,	
Power BI-Business Ir	ntelligence	, Data Analysis using st	tatistical methods, Dashboard	
designing.				
Unit Number: 4	Title:	INTRODUCTION TO		
Onit Number. 4	DATA MA	NIPULATION USING	No. of hours: 8	
		FUNCTION		
Content Summary:				
Heat Map, Tree Map,	Smart Cha	rt,Azure Machine learning	g , Column Chart, Line Chart ,	
Pie,Bar, Area, Scatte	r Chart, Da	ta Series, Axes ,Chart S	Sheet , Trendline , Error Bars,	
Sparklines, Combinati	on Chart, C	Gauge, Thermometer Cha	rt.	
Unit	Titler	Advan Function	No. of hours: 8	
Number: 5	The.	Advantunction	No. of fields: 6	
Content Summary:				
Gantt Chart , Pareto Chart etc , Frequency Distribution, Pivot Chart, Slicers ,Tables:				
Structured, References, Table Styles , What-If Analysis: Data Tables				
	Correlation model Regression model.			

Text and Reference Book

1. Microsoft Power BI Complete Reference: Bring Your Data to Life with the Powerful Features of Microsoft Power BI Book by Brian Knight, Devin Knight, and Mitchell Pearson.

Semester 2

FUNDAMENTALS OF OBJECT-ORIENTED PROGRAMMING USING C++

Program Name	Bachelor in Computer Applications (BCA)			
Course Name:	Course Code	L-T-P	Credits	
Concepts of Object Oriented Programming using C++	ENCA102	3-1-0	4	
Type of Course:		Major		
Pre-requisite(s), if any: Basics	of C programming			

Course Perspective: This course introduces students to the fundamental concepts of Engineering Physics, bridging the gap between theoretical physics principles and practical engineering applications. Engineering Physics is crucial for understanding and designing new technologies and systems in various engineering fields such as electronics, materials science, and mechanical engineering. Students will explore core topics including mechanics, Optics, Polarization, and modern physics, with a special emphasis on their relevance to real-world engineering problems. The course is divided into 4 modules:

- a) Introduction
- b) Classes and Objects
- c) Inheritance & Polymorphism
- d) Strings and exception handling

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
C01	Understand object oriented programming concepts.
CO2	Applying the concepts of object-oriented paradigm (Classes, Objects, inheritance, polymorphism etc.) for designing solution of a given programming problem
CO3	Developing applications that can manipulate data stored in files

CO4 **Developing** applications by considering all possible scenarios thereby employing appropriate exception handling.

Course Outline:

Unit Number: 1	Title:	Introduction	No. of hours: 10	
Content Summary:				
classes, Principals li Dynamic Binding, N	ike Abstraction, dessage Passing	, Encapsulation, Inheri	ented Approach, Objects, tance and Polymorphism. oject-Oriented Languages,	
Unit Number: 2	Title: CLASSE OBJECT	-	No. of hours: 10	

Content Summary:

Abstract data types, Object & classes, attributes, methods, C++ class declaration, Local Class and Global Class, State identity and behaviour of an object, Local Object and Global Object, Scope resolution operator, Friend Functions, Inline functions, Constructors and destructors, instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant member functions and Objects, Memory management Operators.

Unit Number: 3	Title: INHERITANCE & POLYMORPHISM	No. of hours: 10
----------------	-----------------------------------	------------------

Content Summary:

Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes, Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation, composition vs classification hierarchies, Overridinginheritance methods, Constructors in derived classes, Nesting of Classes Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading, Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this pointer, Virtual Functions, pure virtual functions.

Unit Number: 4	Title: STRINGS AND EXCEPTION HANDLING	No. of hours: 10

Content Summary:

Manipulating strings, String Manipulation Functions, formatted and Unformatted Input output. Exception handling, rethrowing exception, Exception Handling Techniques

References

- **R 1.** "C++ Primer Plus" by Stephen Prata
- **R 2.** "The C++ Programming Language" by Bjarne Stroustrup
- **R 3.** "Object-Oriented Programming in C++" by Robert Lafore
- **R 4.** "Effective C++: 55 Specific Ways to Improve Your Programs and Designs" by Scott Meyers
- **R 5.** "C++ Programming: Program Design Including Data Structures" by D.S. Malik

Additional Readings: (Self-Learning Components)

Online Learning Resources

1. **Coursera -** C++ For C Programmers, Part A

This course is designed for programmers who are already familiar with C programming and want to learn C++.

- Link to Coursera Course
- edX Introduction to C++ Offered by Microsoft, this course provides a comprehensive introduction to C++ programming.
 - Link to edX Course
- 3. **YouTube -** C++ Programming Tutorials

This YouTube playlist features tutorials on C++ programming by TheNewBoston.

Link to YouTube Playlist

4. **Udemy -** Learn C++ Programming from Scratch

This course covers the basics of C++ programming, including classes, objects, inheritance, and polymorphism.

Link to Udemy Course

Concepts of Object Oriented Programming Using C++ Lab

Program Name	Bachelor in Computer Applications (BCA)		
Course Name: Concepts of Object Oriented	Course Code	L-T-P	Credits
Programming Using C++ Lab	ENBC154	0-0-2	1
Type of Course:	M	lajor	
Pre-requisite(s), if any:			

Proposed Lab Experiments

Defined Course Outcomes

COs	
CO 1	Demonstrate class object concepts by using C++.
CO 2	Develop programs using inheritance and polymorphism.
CO 3	Demonstrate the significance of constructors and destructor.
CO 4	Construct generic classes using template concepts.
CO5	Implement the concept of file handling.

Ex. No	Experiment Title	Mapped CO/COs
1	Write a program for Functions with default arguments	CO1
2	Simple Classes for understanding objects, member functions and Constructors .Classes with primitive data members	CO1
3	Write a program for Classes with constant data members, Classes with static member functions	CO1
4	Write a program for Classes with pointers as data members – String Class	CO1
5	Write a program for Classes with arrays as data members	CO1
6	Implementation of Call by Value, Call by Address and Call by Reference	CO1
7	Write a Program to illustrate New and Delete Keywords for dynamic memory allocation	CO1
8	Write a Program Containing a Possible Exception. Use a Try Block to Throw it and a Catch Block to Handle it Properly.	CO1
9	Project 1: interactive Basic Calculator: Create a calculator that accepts two numbers and an operator (+,-,/,*,&,<,>,// etc) using keyboard. Depending on operator, calculator must calculate the appropriate answer	CO2,CO3
10	Write a Program to Demonstrate the Catching of All Exceptions.	CO1
11	Write a program fir passing object as argument to a function with help of a program to add marks of two students in two different subjects respectively. Marks of first student in "sub1" should be added with marks of second student in "sub1" and respectively for marks of "sub2" added for both students and then displayed.	CO2,CO3

12	Write a program to illustrate the concept of one class with two objects by taking student data.	CO3
13	Write a program to show the relationship of class and object to display roll no., grade and fee paid by student.	CO2,CO3
14	Write a program to define the member function outside and inside the class.	CO2,CO4
15	Write a program to read and display the information of N persons to illustrate the concept of array of objects.	CO2
16	Write a program to add two numbers to illustrate the use of friend function.	CO2
17	Write a program to assign and copy values to illustrate the concept of parametrized and copy constructor.	
18	Write a program to show the order of constructor and destructor.	CO2
19	Write a program to add two numbers using binary operator overloading.	CO2,CO3
20	Write a program to illustrate the assignment operator overloading.	CO5
21	Sample Programs using inheritance in and accessing objects of different derived classes (a) Write a program to compute the marks explaining the concept of multiple inheritance.	CO3,CO4
22	Write a program to find the factorial of a number using inheritance	CO2,CO3
23	Sample Programs using polymorphism and virtual functions (using pointers) (a) Write a program to find the volume of cylinder and cuboid using function overloading. (b) Write a program to reverse a string using pointers.	CO5,CO4
24	Write a program to explain the relationship of inheritance and virtual function.	CO4,
25	Project 2: Create Tic Tac Toe game using C++ concepts	CO4
26	Project 3: Quiz Game: Design a quiz game program where users can answer multiple-choice questions from various topics. The program should keep track of the score and provide feedback on the user's performance.	CO4,CO5

DISCRETE STRUCTURE

Program Name	Bachelor in Computer Applications (BCA)		
COURSE NAME:	COURSE CODE	T-P	REDITS
Discrete structure	ENCA104	3-1-0	4
TYPE OF COURSE:	Major		
PRE-REQUISITE(S), IF ANY: Basic of Mathematics			

Course Perspective: This course will discuss fundamental concepts and tools in discrete mathematics with emphasis on their applications to computer science. Topics include logic and Boolean circuits, sets, functions, relations, deterministic algorithms and randomized algorithms, analysis techniques based on counting methods and recurrence relations, trees and graphs etc.

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
CO 1	Understand foundational concepts: Gain a solid understanding of fundamental concepts in discrete mathematics, including logic, sets, relations, and functions
CO 2	Express proficiency in logical reasoning and constructing mathematical proofs using various proof techniques such as direct proofs, proof by contradiction, and mathematical induction.
CO 3	Determine and understand methods to Explore various discrete structures, such as sets, sequences, functions, relations, and formal languages.
CO 4	Identify and develop problem-solving skills by applying discrete mathematics concepts to solve mathematical problems and real-

	world scenarios
CO 5	Articulate real-world applications of discrete mathematics in computer science, cryptography, network analysis, optimization problems, scheduling, and decision-making.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Title: Propositional Logics & Number: 1 Relations	No. of hours: 10				
Content: Mathematical Logic: Introduction to Mathematical Thinking, Propositional and Predicate Logic, Propositional Equivalences, Sets, Binary Relation, Equivalence Relation, Logical operations, Conditional Statements, Tautologies, Contradictions, Logical Equivalence, The use of Quantifiers, Normal Forms, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference.					
Sets and Relations : Set Operations, Representa Relations & Functions, Equivalence Relations, Part	,				
Unit Number: 2 Title: Counting, Mathematical Induction, and Discrete Probability	No. of hours: 10				
Content:					
Basics of Counting, Pigeonhole Principle, Permutations and Combinations, Inclusion-Exclusion Principle, Mathematical Induction, Probability, Bayes' Theorem, Discrete Probability Theory, Discrete Structures in Computing, Counting Principles, Permutations and Combinations, Probability Theory, Discrete Random Variables, Discrete Optimization - Optimization Problems and Algorithms, Linear Programming, Integer Programming, Algebraic Structures - Groups (Definition, Properties, Subgroups, Cyclic Groups), Rings (Definition, Properties, Integral Domains, Fields), Isomorphisms and Homomorphisms, Counting and combinatorics.					
UnitTitle:GroupTheory&Number:3Discrete Probability	No. of hours: 10				

Content:							
Groups, Sub	Groups, Subgroups, Semi Groups, Product and Quotients of Algebraic						
Structures,	Structures, Isomorphism, Homomorphism, Automorphism, Rings,					Rings,	
Integral Dor	mains, I	Fields, A	pplications	of Grou	up T	heory, Coml	oinatorial
optimization	optimization: basic concepts and algorithms, Sample spaces, events,						
and probability axioms, Conditional probability and Bayes' theorem.							
Unit Number: 4	Title:	Graph ⁻	Theory			No. of hours	: 10
Content:							

Simple Graph, Multigraph, Weighted Graph, Paths and Circuits, Shortest Paths in Weighted Graphs, Eulerian Paths and Circuits, Hamiltonian Paths and Circuits, Planner graph, Graph Coloring, Bipartite Graphs, Trees and Rooted Trees, Prefix Codes, Tree Traversals, Spanning Trees and Cut-Sets, digraphs, Graph Coloring, Euler's formulae, Graph Theory, Networks and Flows.

References

- Elements of Discrete Mathematics, C. L Liu, McGraw-Hill Inc, 1985. Applied Combinatorics, Alan Tucker.
- Concrete Mathematics, Ronald Graham, Donald Knuth, and Oren Patashnik, 2nd Edition Pearson Education Publishers.
- Combinatorics: Topics, Techniques, Algorithms by Peter J. Cameron, Cambridge University Press.
- Topics in Algebra, I.N. Herstein, Wiley.Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill
- Satinder Bal Gupta: A Text Book of Discrete Mathematics and Structures, University Science Press, Delhi.

Additional Readings: Online Certification Courses for Discrete Mathematics (With Links):

- 1. Discrete Mathematics: <u>https://www.coursera.org/learn/discrete-</u> <u>mathematics</u>
- 2. Mathematics For Computer Science, <u>https://ocw.mit.edu/courses/6-</u> 042j-mathematics-for- <u>computer-science-fall-2010/</u>
- 3. Introduction to Discrete Mathematics for Computer Science Specialization,

https://www.coursera.org/specializations/discrete-mathematics

- 4. Discrete Math Series : Propositional Logic masterclass https://www.udemy.com/course/discretemathematics/
- 5. Master Discrete Mathematics: Sets, Math Logic, and More: <u>https://www.udemy.com/course/master-discrete-mathematics/</u>
- 6. Master Math by Coding in Python: https://www.udemy.com/course/math-with-python/

- 7. Discrete Mathematics for Computer Science in C, Java, Python: <u>https://www.udemy.com/course/discrete-</u> mathematics-and-its-applications/
- 8. Discrete Mathematics Complete Course: <u>https://www.udemy.com/course/discrete-</u><u>mathematics-complete-</u> <u>course/</u>
- 9. Discrete Optimization: <u>https://www.coursera.org/learn/discrete-optimization</u>
- 10. Introduction to Discrete Mathematics for Computer Science Specialization: https://www.coursera.org/specializations/discrete-mathematics

NPTEL Lecture Links for Discrete Mathematics (With Links):

- Discrete Mathematics _ IIITB, IIIT Bangalore, Prof. Ashish Choudhury: <u>https://nptel.ac.in/courses/106108227</u>
- Discrete Mathematics, IIT Ropar: <u>https://nptel.ac.in/courses/106106183</u>

OVERVIEW OF AI, DATA SCIENCE, ETHICS

Program Name	Bachelor in Computer Applications (BCA)			
Course Name: Overview of	Course Code	L-T-P	Credits	
AI, Data Science, Ethics	ENSP102	4-0-0	4	
TYPE OF COURSE: MINOR				
PRE-REQUISITE: Basic knowledge of Excel.				

Course Perspective: The students will be studying about Introduction to Data Science, Natural Language, Machine generated Data, Graph-based or Network Data, Audio, Image, Video, and Streaming data. Also, six steps of data science processes define research goals, data retrieval, cleansing data, and correct errors as early as possible, integrating – combining data from different sources, transforming data, exploratory data analysis, Data modeling, model and variable selection, presentation, and automation would be taught to the students. Introduction to Machine Learning and Introduction to Data Analytics is also included in the syllabus.

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
CO 1	Outline the key concepts of AI and how AI has evolved
CO 2	Identify the key concepts of Machine Learning and will be able to differentiate between key algorithms such as supervised learning and unsupervised learning.
CO 3	Distinguish key Data Science concepts such as structured and unstructured data, SQL, and NoSQL Database

CO 4	Examine the process required the successfully execute a Machine Learning or Data Science project.		
CO 5	Infer the large-scale data using Excel.		

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Data Science	No. of hours: 8			
Content:					
Introduction to Data Science : Defining Data Science and Big Data, Benefits and Uses of Data Science and Big Data, Facets of Data, Structured Data, Unstructured Data, Natural Language, Machine generated Data, Graph based or Network Data, Audio, Image, Video, Streaming data, Data Science Process, Big data ecosystem and data science, distributed file systems, Distributed programming framework, data integration framework, machine learning framework, No SQL Databases, scheduling tools, benchmarking tools, system deployments.					
Unit Number: 2	Title: Data Science Processes	No. of hours: 8			
Content: Data Science Processes : Six steps of data science processes define research goals, data retrieval, cleansing data, and correct errors as early as possible, integrating – combine data from different sources, transforming data, exploratory data analysis, Data modelling, model and variable selection, model execution, model diagnostic and model comparison, presentation and automation					
Unit Number: 3	Title: Introduction to Machine Learning	No. of hours: 8			

Content:

Introduction to Machine Learning: What is Machine Learning, Learning from Data, History of Machine Learning, Big Data for Machine Learning, Leveraging Machine Learning, Descriptive vs Predictive Analytics, Machine Learning and Statistics, Artificial Intelligence and Machine Learning, Types of Machine Learning – Supervised, Unsupervised, Semi- supervised, Reinforcement Learning, Types of Machine Learning Algorithms, Classification vs Regression Problem, Bayesian, Clustering, Decision Tree, Dimensionality Reduction, Neural Network and Deep Learning, Training machine learning systems

Unit Number: 4	Title:	Introduction to AI	No. of hours: 8
Content:			

Introduction to AI: What is AI, Turing test, cognitive modeling approach, the law of thoughts, the relational agent approach, the underlying assumptions about intelligence, techniques required to solve AI problems, level of details required to model human intelligence, successfully building an intelligent problem, history of AI

Unit Number: 4	Title: Introduction to Data Analytics	No. of hours: 4
Content:		

Introduction to Data Analytics: Working with Formula and Functions, Introduction to Power BI & Charts, Logical functions using Excel, Analysing Data with Excel.

References

- Artificial Intelligence 3e: A Modern Approach Paperback By Stuart J Russell & Peter Norvig; Publisher – Pearson
- Artificial Intelligence Third Edition By Kevin Knight, Elaine Rich, B. Nair – McGraw-Hill
- Artificial Intelligence Third Edition By Patrick Henry Winston Addison-Wesley Publishing Company

Additional Readings

Online References

 Artificial Intelligence Professional Program, https://online.stanford.edu/programs/artificial-intelligence-professionalprogram

- Artificial Intelligence (AI), https://www.edx.org/course/artificialintelligence- ai#!
- 21st-Century Teaching & Learning: Data Science, https://online.stanford.edu/courses/xeduc315n-21st-century-teachinglearning-data- science
- Artificial Intelligence: Principles and Techniques, https://online.stanford.edu/courses/xcs221-artificial-intelligence-principlesand- techniques
- Data Visualization, https://online.stanford.edu/courses/cs448b-data-visualization

OVERVIEW OF AI, DATA SCIENCE, ETHICS AND FOUNDATION OF DATA ANALYSIS LAB

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
OVERVIEW OF AI, DATA SCIENCE , ETHICS AND FOUNDATION OF DATA ANALYSIS LAB	ENSP152	0-0-2	1
Type of Course:	MINOR		
Pre-requisite(s), if any: NA			

Proposed Lab Experiments

Defined Course Outcomes

COs	
CO 1	Understand Data Science and Analytics Concepts
CO 2	Implement the various operations over these data structures.
CO 3	Learn the basics of Data Science & Analytics
CO 4	Develop project based on Data Science and Anaytics

Ex No	Experiment Title	Mapped CO/COs
1	Write a program that uses functions to perform the following operations on singly linked list: i.Creation ii.Insertion iii.Deletion iv.Traversal	C01
2	Write a program that uses functions to perform the following operations on doubly linked list: i.Creation ii.Insertion iii.Deletion iv.Traversal	CO1, CO3

3	Write a program that uses functions to perform	CO2, CO4
	the following operations on circular linked list: i.Creation ii.Insertion iii.Deletion iv.Traversal	
4	Write a program that implement stack and its operations using: i.Arrays ii.Pointers	
5	Write a program that implement queue and its operations using: i.Arrays ii Pointers	CO2, CO4
6	Write a program that implements the following sorting methods to sort a given list of integers in ascending order: Bubble sort ii.Selection sort iii.Insertion sort	CO2, CO3
7	Write a program that use both recursive and non- recursive functions to perform the following searching operations for a Key value in a given list of integers: Linear search Binary search	CO2,CO3
8	Write a program to implement the tree traversal methods.	CO2, CO3
9	Write a program to implement the graph traversal methods.	CO2, CO3
10	Program on Comparative Analysis of Matching Algorithms	CO2, CO3
11	Analyzing the Impact of COVID-19 using Data Science: A Comprehensive Case Study	
12	Program for Enhancing Data Visualization with Conditional Formatting	
13	Exploring Pivot Tables in Data Science	CO2, CO3
14	Data Visualization with Power Map	CO1, CO5
15	Write a program for Data Science with Power BI	CO2, CO3
16	Write a program for Building Predictive Models in data science	CO2, CO3
17	Analyzing Sales Wallet Transactions using Data Science: Extracting Insights and Driving Business Growth	CO3, CO4
18	Harnessing the Power of Power Query in Data Science: Extract, Transform, and Analyze Data with Efficiency and Precision	CO3, CO4
19	"Exploring Correlation Methods in Data Science: Unveiling Relationships and Patterns in Complex Datasets	CO3, CO4

R PROGRAMMING FOR DATA SCIENCE AND DATA ANALYTICS LAB

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code L-T-P Credits		
R Programming for Data Science and data analytics lab	SEC039	0-0-4	2
Type of Course:	Minor		
Pre-requisite(s): Basics of C programming			

Proposed Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
1	Installation of R and Rstudio.	CO1
2	Create Matrix in R and perform following operations	CO1, CO3
3	Create a matrix A and fill with values from 1 to 12	CO2, CO4
4	Create a matrix B and fill with values from 1 to 12	CO2, CO4
5	Find the transpose of matrix A and matrix B	CO2, CO4
6	Find the multiplication of matrix A and matrix B.	CO2, CO3
7	Find the addition of matrix A and matrix B.	CO2,CO3
8	Find the substation of matrix A and matrix B Subsetting a Matrix	CO2, CO3
9	Create a matrix A and fill with values from 4 to 16 Get first2 rows Subset top 2 row and left 2 columns Subset 3 row and 2 column	CO2, CO3
10	Write a R Program to create a list a_list that contains numbers, strings, logical value, and vectors Add names to the list a_list	CO2, CO3

	Add an element at the end of the list a_list	
11	Create a function calc this function will accept three arguments that include two numeric vectors x and y and one character vector type. The character vector type will define the kind s operation, the user wants to perform.	CO1, CO5
12	Write a R program to find the numbers between 1000 and 1100 that satisfy (i 2) %% 11 equals (i 3) %% 17, where $^$ is a power operator and %% (modulo operator) returns the remainder of a division.	CO2, CO3
13	Develop a function that can behave differently according to the type of input object.	CO2, CO3
14	Create scatter plot using more than one dataset use various point styles and colors .	CO1, CO5
15	Create multi-period line plot, with mix different line types and create Multi Series Chart with Legend.	CO2, CO3
16	Create bar chart, pie chart and histogram with random data.	CO2, CO3

SEMESTER 3

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Fundamentals of Data Structures	ENCA201	3-1-0	4
Type of Course:	Major		
Pre-requisite(s), if any: Basics of Computer Programming			

FUNDAMENTALS OF DATA STRUCTURES

Course Perspective: This course provides a comprehensive introduction to data structures and algorithms, essential components in the field of computer science that are critical for designing efficient software systems. Data structures serve as the building blocks for data management and organization, crucial for implementing effective algorithms that solve real-world computational problems. The course is structured to not only impart theoretical knowledge but also practical skills through hands-on implementation and problem-solving.

The curriculum is meticulously designed to cover a range of topics from basic to advanced data structures, enabling students to understand and apply various data management techniques effectively. It is divided into four well-defined units:

- a) Foundations of Data Structures
- b) Linear Data Structures
- c) Trees and Graphs
- d) Advanced Sorting, Searching, and Algorithm Techniques

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements

CO 1	Understand and apply basic and advanced data structures.
CO 2	Analyze and compare various sorting and searching algorithms.
CO 3	Design and utilize algorithms for advanced data manipulation.
CO 4	Implement and evaluate algorithms using hashing and advanced algorithmic techniques.
CO 5	Develop applications that integrate data structures with file I/O operations and handle data dynamically.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1		Foundations	of Dat	No. of hours: 9
Introduction	Abstract Data	a Type, Elementa	ry Data Or	rganization.
Measuring ef Asymptotic not	-	n Algorithm: Ti	me and S	pace Complexity Analysis,
			· ·	sentation of Arrays: Row rays, Sparse Matrices.
Unit Number: 2	Title: Linea	ar Data Structu	res	No. of hours: 11
Linked lists: Array and Dynamic Implementation of Single Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal.				
	Stacks: Stack operations: Push & Pop, Array and Linked list implementation of Stack, Applications: Prefix and Postfix Expressions, Recursion.			
Queues: Queue operations: Create, Add, Delete, full and empty queues, Array and linked implementation of queues				
Unit Number: 3	Title: Trees	s and Graphs		No. of hours: 10

Searching: Sequential search, Binary Search.

Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Merge Sort, Heap Sort.

Hashing: Hash Function, Hash Table, Collision Resolution Strategies.

Unit	Title: Advanced Sorting, Searching,	No of hourse 10
Number: 4	and Algorithm Techniques	NO. OF HOURS: 10

Trees: Basic terminology, Binary Trees, Array and linked list implementation, Types of Binary Tree, Extended Binary Trees, Algebraic Expressions, Tree Traversal algorithms: Inorder, Preorder and Postorder, Threaded Binary trees, Search, Addition and deletion of an element in a binary tree.

Graphs: Representation (Matrix and Linked), Traversals, Shortest path, Topological sort. Dijkstra's Algorithm, Floyd Warshall's Algorithm, Minimum Spanning Tree Algorithms (Kruskal's Algorithm, Prim's Algorithm).

Textbooks

- 1. Seymour Lipschutz, "Data Structures", 2nd Edition, 2015
- 2. Aaron Tanenbaum, "Data Structures Using C", 2nd edition, 2016
- 3. Ellis Horowitz and Sartaj Sahni, "Fundamentals of data structures" 2nd edition, 2017
- 4. Data Structures Using C (2nd. ed.). Reema Thareja. Oxford University Press, Inc., USA. 2018.

References

- 1. E. Horowitz and S. Sahani, "Fundamentals of Data Structures", Galgotia Book source Pvt. Ltd.
- 2. Data Structures & Algorithms in Python by John Canning, Alan Broder, Robert Lafore Addison-Wesley Professional ISBN: 9780134855912.
- 3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
- 4. Problem Solving with Algorithms and Data Structures Using Python" by Brad Miller and David Ranum.

Additional Readings:

Online References for Learning Data Structures

I) MIT OpenCourseWare - Introduction to Algorithms (6.006)

- a. Free course materials from MIT's undergraduate course on algorithms, which includes data structures. Lectures, assignments, and exams are available online.
- b. Link: <u>MIT OpenCourseWare Introduction to Algorithms</u>

II) LeetCode - Data Structures

- a. A platform for practicing coding problems. It provides numerous problems related to data structures, complete with solutions and discussions.
- b. Link: LeetCode Data Structures

Fundamentals of Data Structures Lab

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Fundamentals of Data Structures Lab	ENCA253	0-0-2	1
Type of Course: Major			
Pre-requisite(s), if any: Basics of Computer Programming			

Proposed Lab Experiments

Defined Course Outcomes

COs	
CO 1	Analyze and evaluate the time and space complexity of algorithms for various scenarios, demonstrating an understanding of asymptotic notations.
CO 2	Implement and manipulate single-dimensional and multi-dimensional arrays, including operations like insertion, deletion, and traversal.
CO 3	Develop and perform operations on linked lists (single, doubly, and circularly linked), stacks, and queues using both array and linked list representations.
CO 4	Design and analyze the efficiency of different sorting and searching algorithms, as well as implement and compare advanced data structures like binary search trees, AVL trees, and graph algorithms.

Lab Experiments

S.N	Experiment Title	Mapped CO/COs
1	Given an array of integers, perform the following operations: reverse the array, find the maximum and minimum elements, and calculate the sum and average of the elements. Implement functions to perform each operation and ensure the time complexity is optimal.	C01
2	Given an array, rotate the array to the right by k steps, where k is non-negative. Implement the rotation in-place with $O(1)$ extra space.	CO1
3	Write a function to merge two sorted arrays into a single sorted	CO1

	array. The function should handle arrays of different lengths and ensure the final array is sorted.	
4	Given an array containing n distinct numbers taken from 0, 1, 2,, n, find the one that is missing from the array. Implement an efficient algorithm with $O(n)$ time complexity.	C01
5	Find the kth largest element in an unsorted array. Note that it is the kth largest element in sorted order, not the kth distinct element. Implement an efficient algorithm with O(n log n) time complexity.	C01
6	Given an unsorted array of integers, find the length of the longest consecutive elements sequence. Your algorithm should run in O(n) time complexity.	C01
7	Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. Write a function to search for a target value in the array. If found, return its index; otherwise, return -1. Your algorithm should run in O(log n) time complexity.	C01
8	Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Implement an efficient algorithm with O(n) time complexity using Kadane's Algorithm.	C01
10	Write a class to implement a singly linked list with methods to insert an element at the head, insert an element at the tail, delete an element by value, and traverse the list to print all elements.	CO2
11	Using linked lists, write a function to add two polynomials. Each node in the linked list represents a term in the polynomial with its coefficient and exponent. Implement the function to handle polynomials of different degrees.	CO2
12	Implement a doubly linked list with methods to insert an element at the head, insert an element at the tail, delete an element by value, and reverse the list. Ensure that all operations handle edge cases appropriately.	CO2
14	Write a function to evaluate a given postfix expression using a stack. The function should support basic arithmetic operations $(+, -, *, /)$ and handle invalid expressions gracefully.	CO2
16	Write a function to convert an infix expression to a postfix expression using a stack. The function should handle parentheses and operator precedence correctly.	CO2
18	Given a sorted array that has been rotated at an unknown pivot, write a function to search for a target value in the array. If the target exists, return its index; otherwise, return -1. Implement an efficient algorithm with O(log n) time complexity using binary search.	CO2
19	Find the kth largest element in an unsorted array. Note that it is the kth largest element in sorted order, not the kth distinct element. Implement an efficient algorithm with O(n log n) time complexity.	CO2
20	Given a collection of intervals, merge all overlapping intervals and return an array of the non-overlapping intervals that cover all the intervals in the input. Implement an efficient algorithm with O(n log n) time complexity.	CO2

23	Given an array that has been rotated at an unknown pivot, write a function to search for a target value in the array. Implement the solution using binary search with O(log n) time complexity.	CO3
26	Implement various sorting algorithms including Quick Sort, Merge Sort, Heap Sort, and analyze their performance on different input sizes. Ensure the implementation handles edge cases such as duplicate values and nearly sorted arrays.	CO3
27	Given preorder and inorder traversal of a tree, construct the binary tree. Implement an efficient algorithm with O(n) time complexity using a hash map to store the index of elements in the inorder traversal.	CO4
28	Implement Dijkstra's algorithm to find the shortest path from a source vertex to all other vertices in a weighted graph. Use both adjacency matrix and adjacency list representations for the graph. Ensure the algorithm handles negative weights appropriately.	CO4
29	Implement Kruskal's algorithm to find the minimum spanning tree of a graph. Use a union-find data structure to detect cycles and ensure the algorithm runs in O(E log E) time complexity.	CO4
30	Given a binary tree representing an arithmetic expression, write a function to evaluate the expression and return the result. Each leaf node is an operand, and each internal node is an operator. Implement an efficient recursive algorithm.	CO4

Fundamentals of Java Programming

Program Name	Bachelor in Computer Applications (BCA)		
COURSE NAME:	COURSE CODE	Т-Р	REDITS
Fundamentals of Java Programming	ENCA203	3-1-0	4
TYPE OF COURSE:	Major	1	
<pre>PRE-REQUISITE(S), IF ANY: C++ PROGRAMMING</pre>			

Course Perspective: This course provides a comprehensive introduction to Java, one of the most popular and widely used programming languages in the world, particularly known for its portability across platforms from mainframe data centers to smartphones. The "Java Programming" course is meticulously designed to introduce students to the core concepts of object-oriented programming using Java, covering everything from basic constructs to advanced programming features. The curriculum is structured to not only impart theoretical knowledge but also to enhance practical skills through extensive lab sessions, thereby preparing students for real-world software development. The course is divided into 4 modules:

- a) Introduction to Java and OOP
- b) Inheritance and Polymorphism (Abstract Class, Packages, and Interfaces)
- c) Exception Handling, Multithreading and Wrapper Class
- d) I/O Stream, File Handling, and Collections

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
CO 1	Apply Java fundamentals and basic constructs to write Java programs.

CO 2	Design object-oriented solutions using classes, objects, inheritance, and polymorphism.		
CO 3	Utilize interfaces and packages for code structure and reusability.		
CO 4	Implement error handling with try-catch-finally and custom exceptions.		
CO 5	Design multithreaded applications using synchronization.		
CO 6	Perform file I/O, work with Java Collections Framework, and manipulate data using collections		

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title:	Introduction to Java and OOP	No. of hours: 10	
Content: Introduction to Java - Features, and Importance, Java Virtual Machine, Byte Code; Keywords, constants, variables and Data Types, Operators and Expressions, Type casting and conversion; Java Control Structure - Decision making – if, if-else, if-else-if ladder, nested if, switch-case, Loop – do, while, for, jump statements – break and continue; Simple Input and Output - Scanner Class; Arrays Handling - Single and Multi-dimensional, Referencing Arrays Dynamically; Java Strings: String class, Creating & Using String Objects, Manipulating Strings, String Immutability & Equality, Passing Strings To & From Methods. OOP Paradigm: Features of OOP, Class and Object in Java: Creating Classes and Objects. Defining Data Members and Member Methods, Overloading Member Methods, Static Members, this Keyword. Constructors: default, parameterized and copy constructors.				
Unit Number: 2		Inheritance and Polymorphism act Class, Packages, and aces)	No. of hours: 10	
Content:				
Access Specifies, Introduction to Inheritance – Derived Class and Super class, super Keyword; Types of inheritance – simple, multilevel, multilevel, hierarchical, and hybrid; Polymorphism – Static (Method overloading), Dynamic (Method Overriding); Final Class and Method, finalize keyword, Garbage				

Collection; Abstract Method and Abstract Class. Interfaces - Defining an Interface, Implementing an Interface; Packages - Creating Package, Naming a Package, Using Package Members, Extending Interfaces and Packages, Package and Class Visibility.

Unit Number: 3	Title: Exception Handling, Multithreading and Wrapper Class	No. of hours: 10
Content:		

Exception Handling - Definition, Dealing with Errors, The Classification of Exceptions, Declaring Checked Exceptions, Throw an Exception, Creating Exception Classes, Catching Exceptions, finally clause; Multithreaded Programming - Fundamentals, Java thread model: priorities, synchronization, messaging, thread classes, Runnable interface, inter thread Communication, stopping threads. Wrapper Classes suspending, resuming, and Autoboxing/Unboxing, Enumerations.

Unit Number: 4	Title: I/O Stream, File Handling, and Collections	No. of hours: 10
Content:		

File Handling : File class methods, Reading from a file, Writing to a file, Buffered I/O, Character Streams, Byte Streams, File Input/Output Stream, FileReader, FileWriter, BufferedWriter, BufferedReader, FileInputStream, FileOutputStream, RandomAccessFile, File Navigation, File Permissions, Directory Operations, File and Directory Attributes.

Text Book

1. HERBERT SCHILDT, -JAVA - THE COMPLETE REFERENCEI, ORACLE PRESS.

2. CAY S. HORSTMANN, -CORE JAVA VOLUME - I FUNDAMENTALSI, PEARSON.

Additional Readings:

Online Learning Resources

1. Oracle Java Tutorials

- The official tutorials from Oracle, which owns Java, are a great starting point. These cover the basics and advanced features of Java.
- Link: Oracle Java Tutorials

2. Codecademy

• Codecademy offers an interactive Java programming course that includes exercises and projects to help beginners understand Java from scratch.

• Link: <u>Codecademy Java Course</u>

3. Java Code Geeks

- A community-driven site that offers free Java tutorials, articles, and examples. It's a valuable resource for practical tips and best practices.
- Link: Java Code Geeks

4. LeetCode

- Excellent for practicing Java coding problems, LeetCode helps in enhancing problem-solving skills in Java, which is crucial for technical interviews.
- Link: LeetCode

JAVA PROGRAMMING

JAVA PROGRAMMING LAB

Program Name	Bachelor in Computer Applications (BCA)		
COURSE NAME:	COURSE CODE	L-T-P	REDITS
FUNDAMENTALS OF JAVA PROGRAMMING LAB	ENCA251	0-0-2	1
TYPE OF COURSE:	Major		
PRE-REQUISITE(S), IF ANY: C PROGRAMMING			

PROPOSED LAB EXPERIMENTS

DEFINED COURSE OUTCOMES

cos	
CO 1	Apply the concepts learned of operators, if-else, loops and arrays to java-based application development.
CO 2	Demonstrate the use of various types of inheritances, polymorphisms, class objects, inheritances, packages and other concepts to basic and complex java programming problems.
CO 3	Demonstrate graphical applications based on java applets, swings and event handling
CO 4	Apply knowledge of event handling and awt controls to create some new dynamic graphical applications.

EX NO	EXPERIMENT TITLE	MAPPED CO/COS
1	Sample programs using objects and classes, variable types, modifier types, operators, loops decision making, strings and arrays, (a) WAP to display "hello, it's a first program in java".	CO1

	 (b) Wap to find sum of two integers taken as input from user at runtime. (c)Wap to find sum of two float numbers taken as command line arguments (d) Wap to find changed case of entered character. (e) Wap to find maximum of 3 integer numbers taken as input from user at runtime. 	
2	Sample programs using inheritance, overriding, polymorphism, interfaces, packages Wap in java to illustrate the concept of interfaces. Write a program in java to showcase uses of super keyword	CO1
3	Sample programs using exception handling and threads Write a program to demonstrate the use of nesting of try- catch block Wap in java to illustrate the concept of using multiple catch clauses to handle different types of exceptions. Wap in java to create a user defined exception and throw it explicitly.	CO2
4	Sample programs using event handling and awt controls	C01
5	Sample programs using swings write an applet which will display "happy" and "deepavali" as: the word "happy" will roll from top to bottom and "deepavli" from bottom to "top". Both will run at the same speed and stop simultaneously at the center of the applet.	CO3
6	Wap in java to create a frame with various awt controls (like choice, list, textfield and buttons) and handle the events thrown by them.	CO3
7	Wap in java to create a frame with awt controls (like label, push buttons, checkbox, checkbox group) and handle various events generated by them.	CO4
8	Wap to create a package as mypack having a class with three methods: max, fact and show. Use it in other folder with setting classpath and without setting class path.	CO2
9	Wap to create a frame and illustrate the concept of using an adapter class in place of interfaces for handling various mouse events generated over frame window.	CO3
10	Write a program to display "hello" in different color where user clicks left mouse button and "world" where right mouse button is clicked. Use black background.	CO2
11	Demonstrate thread using thread class and runnable	CO3

	interface.	
	Demonstrate various thread methods using a program	
12	Write a java program to create an abstract class named shape that contains two integers and an empty method named printarea(). Provide three classes named rectangle, triangle and circle such that each one of the classes extends the class shape. Each one of the classes contain only the method printarea() that prints the area of the given shape.	CO4
13	Wap to create class with "name" as string and "age" as integer data members. The class should have two methods to take input from user and display the data. Wap to find factorial of a number using class and object.	CO3
14	Write a java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.	CO4
15	Create an frame with one single button with caption "click". On clicking the button will open a new frame with title "factorial". The frame will have two three controls: textfield, label and button. On clicking button calculate the factorial entered in textfield control.	CO4
16	Project 1: simple calculator: build a basic calculator application that performs arithmetic operations like addition, subtraction, multiplication, and division. You can add a user interface using java swing or javafx for a more interactive experience.	CO4
17	Project 2: tic-tac-toe game: implement the classic tic-tac- toe game where two players take turns marking x or o on a 3x3 grid. Allow players to play against each other.	CO4
18	Project 3: quiz application: design a quiz application that presents multiple-choice questions to users and keeps track of their scores. Include features like a timer, question randomization, and a scoring system.	CO4
19	Project 4: hangman game: create a hangman game where players guess letters to uncover a hidden word. Include features such as displaying the word's progress, tracking incorrect guesses, and providing hints.	CO4

Probabilistic Modelling and Reasoning

Program Name	Вас	helor in Compute	r Applications	(BCA)
Course Name: Probabilistic Modeling and Reasoning		Course Code	L-T-P	Credits
		ENSP205	0-0-4	2
Type of Course:	Probabilis	tic Modeling and R	easoning	
Pre-requisite(s), i	f any: Bas	ic knowledge of S	tatistics	

Course Perspective:

The course on Probabilistic Modelling and Reasoning provides a comprehensive foundation in understanding and applying probabilistic methods to model uncertainty and make informed decisions based on incomplete data. Students will explore fundamental concepts of probability theory, Bayesian inference, and graphical models, while learning both exact and approximate inference techniques. Through hands-on tutorials and practical assignments, participants will gain proficiency in using probabilistic programming languages and apply these skills to real-world problems in various domains such as natural language processing and bioinformatics. This course is essential for developing the analytical and computational skills required for careers in data science, machine learning, and artificial intelligence.

The course is divided into 4 modules:

- Introduction to Statistics
- Probability Theory
- Point Estimations
- Test of Statistical Hypothesis and P-values

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements		
CO 1	Explain the data-gathering techniques		
CO 2	Inspect the data using descriptive statistics		
CO 3	Illustrate the probability and conditional probability concepts		
CO 4	Distinguish between various probability distributions and analyze the data following different probability distributions		

	Solve inferential statistics problems using point and interval
CO5	estimation techniques. Infer the statistical problems using
	hypothesis testing and p value

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

	UNIT WISE DETAILS	
Unit Number: 1	Introduction to Statistics	No. of hours: 8
methods, curre Scientific da observational s Displaying data tendency, mea	mary: Introduction to Statistics. Role of statistics and applications of statistics ata gathering: Sampling techniques, scient ata single variable (graphical methods, meaning of spread), displaying the relationship betwee asure of association between two or more variable	entific studies, asure of central een two or more
Unit Number: 2	Probability Theory	No. of hours: 8
probability, ind Random Vari distribution of distribution. F uniform distrib gamma distr	heory : Sample space and events, probability, axi ependent events, conditional probability, Bayes' t ables : Discrete and continuous random varia f discrete random variables, binomial distri probability distribution of continuous random pution, normal (Gaussian) distribution, exponen ibution, beta distribution, t-distribution, variance, and covariance. Probability Inequa	heorem. bles. Probability bution, Poisson variables, The tial distribution, $\chi^{"}$ distribution.
Unit Number: 3	Point Estimations	No. of hours: 8
maximum like estimators, m unbiasedness. Interval Est i	tions: Methods of finding estimators, method lihood estimators, Bayes estimators. Methods ean squared error, best-unbiased estimator, imations: Confidence interval of means an e confidence interval of percentiles	s of evaluating sufficiency and
Unit Number: 4	Test of Statistical Hypothesis and P- values	No. of hours: 8
Content:	stical Hypothesis and P-values: Tests about	

of equality of two means, tests about proportions, p- values, likelihood ratio test, Bayesian tests

Bayesian Statistics: Bayesian inference of discrete random variable, Bayesian inference of binomial proportion, comparing Bayesian and frequentist inferences of proportion, comparing Bayesian and frequentist inferences of mean

Univariate Statistics using Python: Mean, Mode. Median, Variance, Standard Deviation, Normal Distribution, t-distribution, interval estimation, Hypothesis Testing, Pearson correlation test, ANOVA F- test

about intelligence, techniques required to solve AI problems, level of details required to model human intelligence, successfully building an intelligent problem, history of AI

References

• Douglas C. Montgomery, (2012), Applied Statistics and Probability for Engineers, 5th Edition, , Wiley India, ISBN: 978-8-126-53719-

Additional Readings: Specify

Online Learning Resources

□ Coursera - Probabilistic Graphical Models

 This course, offered by Stanford University, covers the basics of probabilistic graphical models, including representation, inference, and learning.

Link to course

□ edX - Bayesian Statistics: From Concept to Data Analysis

• Provided by the University of California, Santa Cruz, this course introduces Bayesian statistics, covering probability theory, Bayesian inference, and various applications.

Link to course

□ Khan Academy - Statistics and Probability

• A comprehensive resource that covers a wide range of topics in statistics and probability, from basic concepts to more advanced theories.

Link to course

MIT OpenCourseWare - Introduction to Probability and Statistics

• This MIT course provides lecture notes, assignments, and exams to help students understand the fundamentals of probability and statistics.

Link to course

□ Udacity - Introduction to Statistics

• An introductory course that covers the basics of statistics, including data analysis, probability, and inference.

Link to course

□ DataCamp - Foundations of Probability in R

• A hands-on course that teaches the fundamentals of probability theory using the R programming language.

Link to course

□ YouTube - 3Blue1Brown: Bayes' Theorem

• An intuitive and visual explanation of Bayes' Theorem, provided by the popular educational.

Link to course

COMPETITIVE

CODING BOOTCAMP-

Ι

Program Name:	B. Tech (Computer Science and Engineering)	
Course Name: COMPETITIVE CODING	Course Code F	- Credits
BOOTCAMP-I	3 0 0	-
Type of Course:	AUDIT COL	JRSE
Contact Hours	30	
Version		

Course Outcomes

CO1	Understand and apply problem-solving strategies and techniques relevant
	to competitive programming
CO2	Analyze the efficiency of algorithms in terms of time and space complexity
	using asymptotic notations
CO3	Apply core programming concepts such as functions, recursion, and
	dynamic memory allocation to solve computational problems
CO4	Implement and analyze solutions for problems involving arrays and strings,
	utilizing efficient operations and algorithms

Course Outline:

Unit Number: 1 Content:	Programming	
Content:		
Introduction to Com	npetitive Programming Platforms	
 Overview of r 	major platforms: Codeforces, LeetCode, HackerRan	k etc.
 Setting up ac 	counts and environment for competitive programm	ning.
 Solving introd 	ductory problems to get familiar with the platforms	
Problem-Solving Str	rategies	
 Techniques for 	or solving problems	
 Greedy Algor 	ithms: Understanding local optimality leading to gl	obal solutions.
 Divide and C 	Conquer: Solving problems by breaking them int	o subproblems (with
examples like	e Merge Sort).	
 Brute Force: 	Iterative approach to solve problems when constra	ints are small.
		No. of hours: 8
Unit Number: 2	Title: Time and Space Complexity of Algorithms	
Content:		
Time and Space Cor	mplexity:	
 Big O Notatio 	n: Definition, examples, and practical importance.	
 Common Con 	nplexities: $O(1)$, $O(\log n)$, $O(n)$, $O(n \log n)$, $O(n^2$), etc.
 Impact of tim 	ne and space complexity on algorithm performance	
 Asymptotic n 	otations	
 Best, Average 	e and worst case analysis of Algorithms	
Unit Number: 3	Title: Core Programming Concepts	No. of hours: 8
Content:		
Functions: Definition	on and Declaration, Function Overloading, Recursic	on and Backtracking
Pointers: Basics of	Pointers and References, Pointer Arithmetic, Dyna	mic Memory
Allocation (malloc, f	ree, new, delete)	-

Files: File I/O Operations (Reading/Writing), File Handling in C++/Java/Python, **Vectors** (in C++/ArrayLists in Java): Declaration, Initialization, and Operations, Dynamic Resizing

Unit Number: 4	Title: Arrays and Strings	No. of hours: 6
Content:		
Arrays: Operations	, Manipulations	
Strings: Operation	s, Substrings, Pattern Matching	
Operations on arra	ys: Insertion, deletion, and traversal.	
String operations:	Concatenation, substring search.	
Key Problems: Rot	ating arrays, reversing strings, finding long	gest substrings without
repeating characte	rs	

Experiment List

Problem Statement	Mapped COs
1. Two Sum: Find two numbers that add up to a specific target.	CO1
2. Best Time to Buy and Sell Stock: Maximize profit from stock prices.	CO1
3. Valid Parentheses: Check if a string contains valid parentheses.	CO1
4. Greedy Algorithm: Jump Game - Can you reach the end of the array?	C01
5. Divide and Conquer: Merge Sort implementation to sort an array.	CO1
6. Brute Force: Find all subsets of a given set.	CO1

Problem Statement	Mapped COs
7. Greedy Algorithm: Minimum Number of Platforms Required for Trains	CO1
8. Divide and Conquer: Maximum Subarray (Kadane's Algorithm)	CO1
9. Brute Force: Count number of occurrences of a substring in a string.	CO1
10. Greedy Algorithm: Coin Change Problem (Minimum Coins)	CO1
11. Time Complexity: Check if a number is prime using $O(\sqrt{n})$ complexity.	CO2
12. Sorting: QuickSort algorithm with O(n log n) complexity.	CO2
13. Big O Notation: Analyze time complexity of an algorithm.	CO2
14. Space Complexity: Fibonacci with O(n) space complexity.	CO2
15. Time Complexity: Find first duplicate element in an array with O(n) time.	CO2
16. Time Complexity: Search an element in a rotated sorted array in O(log n) time.	CO2
17. Complexity Analysis: Binary Search Tree operations with complexity O(log n).	CO2
18. Analyze best, average, and worst case for Insertion Sort.	CO2
19. Time and Space Complexity: Check the complexity of an algorithm (recurrences).	CO2
20. Time Complexity: Compute factorial recursively with complexity analysis.	CO2
21. Recursion: Generate all permutations of a string.	CO3

Problem Statement	Mapped COs
22. Dynamic Memory Allocation: Implement a dynamic array (vector) from scratch.	CO3
23. Backtracking: Solve the N-Queens problem using recursion.	CO3
24. Pointers: Swap two numbers using pointers in C++.	CO3
25. File Handling: Read and write data to a file in Python/C++/Java.	CO3
26. Function Overloading: Implement overloaded functions for adding integers and floats.	CO3
27. Dynamic Memory Allocation: Use malloc and free to manage memory in C.	CO3
28. Recursion: Solve Tower of Hanoi using recursion.	CO3
29. Arrays: Rotate an array to the right by k steps.	CO4
30. Strings: Find the longest substring without repeating characters.	CO4

Learning Experiences:

- Understanding Memory Management: Students grasp the concept of memory allocation and deallocation through pointers, gaining insights into how data is stored and accessed in memory.
- Pointer Arithmetic: Learners practice pointer arithmetic to navigate arrays and structures, enhancing their ability to perform low-level data manipulations efficiently.
- Dynamic Memory Allocation: Students experience dynamic memory allocation with functions like malloc, calloc, and free, learning to manage memory dynamically during runtime.
- Pointer and Function Interactions: Students explore how pointers are used to pass arguments by reference, leading to more efficient function calls and manipulation of data within functions.
- Pointer to Pointer Concepts: Learners work with pointer to pointer (double pointers) to understand multi-level indirection and its applications in complex data structures and dynamic memory management.

 Debugging with Pointers: Students enhance their debugging skills by identifying and fixing pointer-related issues such as memory leaks, dangling pointers, and segmentation faults.

Textbooks:

- "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
- "Algorithm Design" by Jon Kleinberg and Éva Tardos.

Online Resources:

- LeetCode (<u>https://leetcode.com/</u>)
- HackerRank (<u>https://www.hackerrank.com/</u>)
- GeeksforGeeks (<u>https://www.geeksforgeeks.org/</u>)

List of Suggested Competitive Programming Courses:

- 1. <u>Algorithms and Data Structures</u> by MIT OpenCourseWare
- 2. Introduction to Competitive Programming by NPTEL
- 3. <u>Competitive Programming</u> by HackerRank
- 4. <u>The Bible of Competitive Programming & Coding Interviews</u>

All students must complete one online course from the suggested programs.

Web References

- <u>https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/</u>
- <u>https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-</u> <u>like-amazon-microsoft-adobe/</u>
- <u>https://github.com/parikshit223933/Coding-Ninjas-Competitive-</u>
 <u>Programming</u>
- https://www.hackerearth.com/getstarted-competitive-programming/
- https://www.csestack.org/competitive-coding-questions/

References to Interview Questions

https://www.simplilearn.com/coding-interview-questions-article

- https://www.csestack.org/competitive-coding-questions/
- https://www.geeksforgeeks.org/a-competitive-programmers-interview/
- <u>https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-</u> <u>like-amazon-microsoft-adobe/</u>

Semester-IV

OPERATING SYSTEMS

Program Name	Bachelor in Computer Applications (BCA)			
Course Name: OPERATING	Course Code	L-T-P	Credits	
SYSTEMS	ENCS303	4-0-0	4	
Type of Course:	Major	I	I	
Pre-requisite(s), if any: Basic	s of programming			

Course Perspective: This course provides a comprehensive introduction to the fundamental principles and practices of operating systems. It covers essential concepts such as process management, memory management, file systems, and I/O systems, as well as more advanced topics like distributed operating systems and concurrent systems. Through this course, students will gain a deep understanding of how operating systems function, how they manage hardware resources, and how they provide services to applications. The course also emphasizes practical skills in implementing and managing operating system components and handling challenges such as process synchronization, deadlocks, and system security. By the end of the course, students will be well-equipped to apply these concepts in designing and optimizing operating systems in various computing environments. The course is divided into 4 modules:

- a) Introduction to Operating Systems and Process
- b) Memory & File Management
- c) Process Synchronization, Deadlocks & I/O Systems
- d) Distributed Operating Systems & Concurrent Systems

COs	Statements
CO 1	Understand the fundamental concepts of operating systems, including their structure and types.
CO 2	Analyze process scheduling algorithms and their impact on system performance.
	Implement and manage memory allocation, paging, and virtual memory techniques.
(()4	Examine process synchronization mechanisms and handle deadlocks in an operating system environment.
CO 5	Develop distributed operating systems and concurrent systems with a focus on fault tolerance and recovery mechanisms.

The Course Outcomes (COs): On completion of the course the participants willbe:

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title:IntroductiontoOperatingSystem, Process and CPU SchedulingNo. of hours:10	
-------------------	--	--

Introduction: Definition, Role, Types of Operating System, Batch Systems, multi programming, time-sharing, parallel, distributed and real-time systems, Operating system structure, Operating system components and services, System calls, System programs, Virtual machines.

Processes: Process Concept, Process Scheduling, Operation on Processes, Cooperating Processes, Threads.

CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Multiple Processor Scheduling, Real-Time Scheduling.

Unit Number:	Title: Threads, Synchronization Deadlock and Memory Management	^{1,} No. of hours: 10
2		

Threads: overview, Benefits of threads, User and kernel threads, Multithreaded Models, Precedence Graph, Fork-Join, Cobegin-Coend construct.

Inter-process Communication and Synchronization: Background, The Critical-Section Problem, Synchronization Hardware, Semaphores, Classical Problems of Synchronization, Critical Regions, Monitors, Message Passing.

Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.

Memory Management: Background, Logical vs. Physical Address space, swapping, Contiguous allocation, Paging, Segmentation, Segmentation with Paging.

Unit	Title:	Virtual	Memory,	Device		
Number: 3	Manage Structur		Secondary	-Storage	No. of hours:	10

Virtual Memory: Demand Paging and its performance, Page-replacement Algorithms, Allocation of Frames, Thrashing, page size and other Considerations, Demand Segmentation.

Device Management: Techniques for Device Management, Dedicated Devices, Shared Devices, Virtual Devices, Independent Device Operation, Buffering, Device Allocation Consideration.

Secondary-Storage Structure: Disk Structure, Disk Scheduling, Disk Management, Swap Space Management, Disk Reliability.

Unit	Title:	File-System	Interface,	No. of hours:	10
Number: 4	impleme	implementation and Security			10

File-System Interface: File Concept, Access Methods, Directory Structure.

File-System Implementation: Introduction, File-System Structure, Basic File System, Allocation Methods, Free-Space Management, Directory Implementation.

Security: Security problems, Goals of protection, Access matrix, Authentication, Program threats, System threats, Intrusion detection.

Textbooks

1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, GregGagne, Wiley

2. Modern Operating Systems, Andrew S. Tanenbaum and Herbert Bos, Pearson, 4th Edition, 2014.

3. Operating Systems: Internals and Design Principles, William Stallings, Pearson, 9th Edition, 2017.

4. Operating Systems: Three Easy Pieces, Remzi H. Arpaci-Dusseau and Andrea

C. Arpaci-Dusseau Arpaci-Dusseau Books, 1st Edition, 2018

References

- I) MukeshSinghal and N. G. Shivaratri, "Advanced Concepts in OperatingSystems", McGrawHill, 2000
- II) Abraham Silberschatz, Peter B. Galvin, G. Gagne, "Operating SystemConcepts", Sixth Addison Wesley Publishing Co., 2003
- III) Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- IV) Tannenbaum, "Operating Systems", PHI, 4th Edition.

Additional Readings:

Online Learning References :

I) MIT OpenCourseWare - Operating System Engineering

- a. Advanced course materials from MIT covering various topics in operating system design and implementation.
- b. Link: <u>MIT OpenCourseWare Operating System Engineering</u>

II) NPTEL - Operating System by IITs

- a. Online course by IITs providing in-depth coverage of operating system principles and practices.
- b. Link: <u>NPTEL Operating System</u>

OPERATING SYSTEM LAB

Program Name	Bachelor in Computer Applications (BCA)			
Course Name:	Course Code	L-T-P	Credits	
OPERATINGSYSTEMS LAB	ENCS351	0-0-2	1	
Type of Course:	Major	Major		
Pre-requisite(s), if any: Basics of programming				

Defined Course Outcomes

COs	Statements
CO 1	Implement and analyze process creation, management, and CPU scheduling algorithms, demonstrating the ability to simulate an operating system environment.
CO 2	Develop and evaluate multithreaded applications, demonstration synchronization, deadlock handling, and memory manageme techniques.
CO 3	Simulate virtual memory management, device management, and disk scheduling algorithms, showcasing the application of operating system concepts.
CO 4	Design and implement secure file systems, demonstrating file operations, directory management, and access control mechanisms.

List of Experiments

Ex No		Experiment Title				
	1	Implement a program that simulates system calls for basic operations such as process creation, file manipulation, and device management. Demonstrate how system calls interact with the operating system components and services.				
	2	Develop a process scheduling simulation that demonstrates different CPU scheduling algorithms (FCFS, SJF, Round Robin, Priority Scheduling). Compare the performance of each algorithm based on scheduling criteria such as turnaround time,				

	waiting time, and response time.	
		<u>CO1</u>
3	Create a multi-threaded application to illustrate process operations, including creation, termination, and inter-process communication. Implement thread management to demonstrate the concept of cooperating processes and the benefits of threading.	CO1
4	Implement a multi-threaded program to demonstrate the benefits of threads over single-threaded processes. Use different multithreading models such as user-level and kernel- level threads and simulate various thread operations.	CO2
5	Design and implement solutions for classical synchronization problems such as the Producer-Consumer problem, Readers- Writers problem, and Dining Philosophers problem using semaphores, critical regions, and monitors.	CO2
6	Create a simulation to detect and handle deadlocks in a system. Implement deadlock prevention, avoidance, and detection algorithms. Demonstrate recovery from deadlock scenarios.	CO2
7	Develop a memory management simulator that demonstrates different memory allocation techniques such as contiguous allocation, paging, and segmentation. Implement swapping and address translation between logical and physical address spaces.	CO2
8	Implement a demand paging system to simulate virtual memory management. Evaluate the performance of different page-replacement algorithms (FIFO, LRU, Optimal) and analyze the effects of thrashing.	CO3
9	Create a simulation for device management that includes buffering, device allocation, and handling dedicated, shared, and virtual devices. Demonstrate techniques for independent device operation and management.	CO3
10	Develop a disk scheduling simulator to compare the performance of different disk scheduling algorithms (FCFS, SSTF, SCAN, C-SCAN). Implement disk management techniques and swap space management.	CO3
11	Implement a file system simulator to demonstrate different file access methods (sequential, direct, indexed). Design a directory structure and simulate file operations such as creation, deletion, reading, and writing.	CO4
12	Develop a program to simulate file system implementation techniques, including different file allocation methods (contiguous, linked, indexed) and free-space management techniques. Implement a basic file system and directory structure.	CO4

Database Management System

Program Name	Bachelor in Co (BCA)	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits	
Database System Management	ENCS204	4-0-0	4	
Type of Course:	Major	L	1	
Pre-requisite(s), if any: Nil	· · · · · · · · · · · · · · · · · · ·			

Course Perspective: This course provides a comprehensive introduction to the fundamental concepts and advanced techniques of database management systems (DBMS). It is designed to equip students with the knowledge and skills required to design, implement, and manage databases effectively. The course covers a broad range of topics, including database architecture, data models, SQL, transaction management, concurrency control, database recovery, and security. The course is divided into 4 modules:

- a) Introduction
- b) Relational Query Languages
- c) Transaction Processing and Storage Strategies
- d) Advanced Topics and Database Security

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
CO 1	Understand the fundamental concepts and architecture of database management systems, including data models and ER modeling.

CO 2	Utilize Structured Query Language (SQL) and relational algebra for effective database querying and manipulation.
CO 3	Apply database design principles, including normalization and integrity constraints, to develop well-structured databases.
CO 4	Analyze storage structures, transaction processing, concurrency control, and recovery protocols in databases.
CO 5	Implement security measures and explore advanced database concepts such as distributed databases, data warehousing, and data mining.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction	No. of hours: 12		
Content:		· ·		
Introduction	to DBMS: Overview, benefits, and a	pplications.		
Database System Architecture : Schemas, Instances, Data abstraction, data models (network model, relational model, object-oriented data model), Three schema architecture and data independence				
Entity-Relationship Model : Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, ER diagrams, Naming Conventions, Design issues.				
Integrity Constraints : Primary key, foreign key, unique, not null, check constraints.				
Unit Number: 2	Title: Relational Query Langua	iges No. of hours: 8		

Content:

Relational Database Design, Relational query languages, Relational algebra, Tuple and domain relational calculus.

SQL: DDL (Data Definition Language), DML (Data Manipulation Language), DCL (Data Control Language).

Query Processing and Optimization: Evaluation of relational algebra expressions, query equivalence, join strategies, query optimization algorithms.

Database Design: Functional dependencies, normalization (1NF, 2NF, 3NF, BCNF, 4NF), dependency preservation, lossless decomposition.

Unit Number: 3	Title: Transaction Processing and Storage Strategies	No. of hours: 12
<u> </u>		

Content:

Transaction Management: ACID properties, transaction states, serializability, conflict and view serializability.

Concurrency Control: Lock-based protocols, timestamp-based protocols, multiversion concurrency control, deadlock handling.

Database Recovery: Recovery concepts, recovery techniques (log-based recovery, shadow paging), checkpoints.

Unit Title: Adva Number: Database Securi 4	d Topics and No. of hours: 8	
--	------------------------------	--

Content:

Database Security: Authentication, authorization, access control, DAC (Discretionary Access Control), MAC (Mandatory Access Control), RBAC (Role-BasedAccess Control).

Intrusion Detection: Techniques and tools, SQL injection prevention.

Advanced Database Topics: Object-oriented databases, object-relational databases, logical databases, web databases.

Distributed Databases: Concepts, architecture, data fragmentation, replication, distributed query processing.

Data Warehousing and Data Mining: Concepts, architecture, OLAP, data preprocessing, data mining techniques.

References

- 1. R. Elmasri and S.B. Navathe, 2000, Fundamentals of Database Systems, 3rd Ed, AW.
- 2. C.J. Date, 2000, An Introduction to Database Systems, 7th ED., Addison-Wesley.
- 3. Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshand, Mc Graw-Hill.

Additional Readings:

Online Learning Resources for "Database Management Systems"

- 1. NPTEL-Database Management System
- 2. MIT OpenCourseWare Database Systems (6.830)
- Advanced course materials from MIT covering database system internalsand advanced topics.
- Link: <u>MIT OpenCourseWare Database Systems</u>

3. Oracle - Database 2-Day Developer's Guide

- Official documentation and guide for Oracle database developers.
- Link: Oracle Database 2-Day Developer's Guide

4. SQLBolt - Learn SQL with interactive exercises

- Interactive SQL tutorials and exercises to practice database querying.
- Link: <u>SQLBolt Learn SQL</u>

DATABASE MANAGEMENT SYSTEMS LAB

Program Name	Bachelor in Com	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits	
Database Management System Lab	ENCS254	0-0-2	1	
Type of Course:	Major			

Defined Course Outcomes

COs	
	Design and implement database schemas using both open-source and commercial DBMS, defining tables, relationships, and integrity constraints
CO 2	Develop and analyze Entity-Relationship diagrams, relational schemas, and enforce normalization techniques to ensure database efficiency and integrity
	Write and execute SQL queries for data definition, manipulation, and complex data retrieval, demonstrating proficiency in relational algebra and transaction processing
	Implement advanced database concepts including indexing, concurrency control, recovery techniques, security features, and distributed database processing

Proposed Lab Experiments

E> No	Lab Task	Mappe d CO/CO
		S

113 | Page

9	Design and implement a data warehousing solution for a financial	CO4
	Implement lock-based protocols, timestamp-based protocols, and multi-version concurrency control. Simulate scenarios where deadlock handling techniques are required to ensure smooth operation	
8	Develop a concurrency control mechanism for an e-commerce platform to manage simultaneous transactions, such as placing orders and updating inventory.	CO3
	Implement features for depositing, withdrawing, and transferring funds, and simulate scenarios to showcase conflict and view serializability.	
7	Design and implement a banking transaction management system that demonstrates the ACID properties. The system should handle various transaction states, ensuring serializability and data integrity.	CO3
6	Populating, Querying, and Securing the E-commerce Database using SQL DML, DCL, and Relational Algebra/Calculus	CO2
5	Write SQL scripts to create the e-commerce platform database schema using Data Definition Language (DDL). Create tables for Customers, Products, Orders, Order Details, and Payments, and enforce primary keys, foreign keys, unique constraints, not null constraints, and check constraints. Ensure the database structure supports data integrity and consistency	CO2
	Payments. Define the entities, their attributes, and the relationships between them, ensuring the schema is normalized to at least 3NF. Use this schema to create an ER diagram and specify primary and foreign keys.	
4	Design a relational database schema for an e-commerce platform that manages Customers, Products, Orders, Order Details, and	CO2
3	Design and implement an ER model for a university course registration system. The system should include entities such as Students, Courses, Professors, and Enrollments. Define relationships, attributes, and keys	CO1
	external schema. Illustrate how data independence is achieved and provide examples of each schema with specific details.	
2	Design a three-schema architecture for a university management system. Create the internal schema, conceptual schema, and	CO1
1	Analyze and document the benefits of using a DBMS over a traditional file system for managing data. Use a case study of a small retail business to highlight the advantages of a DBMS in handling inventory, sales, and customer data.	CO1

analytics platform. Create a data warehouse to store historical financial data and perform OLAP operations for data analysis.	
Implement data preprocessing techniques and apply data mining algorithms to discover patterns and insights from the financial data. Simulate various analytical queries and demonstrate how the data	
warehouse and mining techniques enhance decision-making and business intelligence.	

Foundation of Machine Learning

Program Name Bachelor in Computer A			Applications (BCA)	
Course Name: Fundamentals of Machine Learning	Course Code	L-T-P	Credits	
	ENSP205	4-0-0	4	
Type of Course:	Minor			
Pre-requisite(s), if any:				

Course Perspective:

This course introduces the fundamental concepts of Machine Learning (ML) and provides hands-on experience in applying these concepts to solve real-world problems. Students will explore both the theoretical underpinnings and practical applications of machine learning, focusing on supervised and unsupervised learning techniques.

Prerequisites: Basic knowledge of statistics, probability, and programming

The Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements	Bloom's level
CO1	Understand Core Concepts and Taxonomy of Machine Learning	Cognitive Level: Understand
CO2	Apply Supervised Learning Models	(Cognitive Level: Apply)
CO3	Design and Implement Ensemble and Unsupervised Learning Algorithms	(Cognitive Level: Create)
CO4	Evaluate Machine Learning Models and Ethical Implications	(Cognitive Level: Evaluate)

Course Outline:

|--|

Content Summary Introduction: Introduction to ML, Conventional VS ML approach, Taxonomy (types) of Machine Learning, Design a Learning System, challenges in Machine Learning, Applications. Machine learning Workflow: Role of Data, Data Preprocessing, wrangling, Data skewness removal (sampling), Model Training, Model Testing and performance metrics Unit Number:2 Title: Supervised Learning -I No. of hours: 14 **Content Summary:** Linear models for Regression: Simple Linear Regression, Multiple Linear Regression, Assumptions of Linear Regression, Least Squares Estimation, Gradient estimation, Coefficient Interpretation, Goodness-of-Fit Measures, Regularization Techniques, Model Validation, Applications. Non-Linear Regression Models: Polynomial Regression, lasso & Ridge regression, Exponential Regression, Logarithmic Regression, evaluation metrics Logistic Regression: Definition and comparison with linear regression, Odds and Log-Odds, Sigmoid Function, Model Estimation, Interpretation of Coefficients, Model Evaluation, Applications **Unit Number:3** Title: Supervised Learning -II No. of hours: 08 **Content Summary:** k-Nearest Neighbors (k-NN) algorithm: Introduction to k-NN, Choosing the 'k' Value, Distance Metrics, Feature Scaling, Handling Missing Values, Weighted k-NN, Algorithm Efficiency and Optimization, Cross-Validation, Applications of k-NN, Pros and Cons of k-NN **Decision Tree Classification Algorithm:** Introduction to Decision Trees, Types of Decision Trees Building a Decision Tree, Splitting Criteria, Tree Pruning, Handling Missing Data, Decision Trees for Regression, Decision Trees for Classification, Overfitting in Decision Trees, Advantages and Disadvantages of Decision Trees, Applications of Decision Trees. Naive Bayes Algorithm: Introduction to Naive Bayes, Probability Basics, Bayes' Theorem Application, Assumptions of Naive Bayes, Types of Naive Bayes Models, Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Feature Likelihood Estimation, Model Training and Prediction, Laplace Smoothing, Model Evaluation Metrics, Applications of Naive Bayes, Advantages and Limitations Support Vector Machine (SVM): Introduction to SVM, Linear SVM Classification, Non-Linear SVM Classification, Kernel Trick-Linear Kernel, Polynomial Kernel, Radial 117 | Page

Basis Function (RBF) Kernel Sigmoid Kernel M), Soft Margin Classification, Hyperparameters in SVM, SVM Regression, Feature Scaling Importance in SVM, Model Training and Prediction, Model Evaluation Techniques, Applications of SVM

Unit Number:4	Ensemble Learning & Unsupervised Algorithms	No. of hours: 10
Content Summa	arv:	
Ensemble Lea	r ning : Introduction to Ensemble Lear hods of Combining Models- Bagging (
Bagging Algorit	thms: Random Forests, Extra Trees (Extreme	ely Randomized Trees)
(Extreme Gradier	ithms : AdaBoost (Adaptive Boosting): Gra nt Boosting) tions of Ensemble Methods, Advantages and	2.
Unsupervi	sed Learning : Introduction, K-Means Cluste Component Analysis)	ering, PCA (Principal

Reference Books:

R 1. T. M. Mitchell, Machine Learning (1 ed.), McGraw Hill, 2017. ISBN 978-1259096952.
R 2. E. Alpaydin, Introduction to Machine Learning (4 ed.), Phi, 2020. ISBN 978-8120350786

Additional Readings: Specify

Self-Learning Components:

Online Learning Resources

Introduction to AI & Machine Learning

1. Coursera - Machine Learning by Stanford University

Taught by Andrew Ng, this course provides a broad introduction to machine learning, data mining, and statistical pattern recognition.

Link: Coursera - Machine Learning

Supervised Learning

Udacity - Intro to Machine Learning with PyTorch and TensorFlow

This course focuses on supervised learning techniques using popular frameworks like PyTorch and TensorFlow.

Link: Udacity - Intro to Machine Learning

Unsupervised Learning

Coursera - Unsupervised Machine Learning by Stanford University

Part of the Machine Learning Specialization, this course dives deep into clustering, association rule learning, and dimensionality reduction.

Link: Coursera - Unsupervised Machine Learning

edX - Data Science: Machine Learning by Harvard University

This course covers several unsupervised learning techniques and is part of Harvard's Data Science Professional Certificate.

Link: edX - Data Science: Machine Learning

edX - MLOps (Machine Learning Operations) Fundamentals by Google Cloud

Learn the basics of MLOps and how to deploy, scale, and maintain machine learning models using Google Cloud.

Link: edX - MLOps Fundamentals

GitHub - Awesome Machine Learning

A curated list of awesome machine learning frameworks, libraries, and software.

Link: <u>GitHub - Awesome Machine Learning</u>

Fundamentals of Machine Learning Lab

Program Name	Bachelor in Computer (BCA)	Applications	
Course Name: Fundamentals of Machine	Course Code	L-T-P	Credits
Learning Lab	ENSP257	0-0-2	1
Type of Course:	Μ	linor	
Pre-requisite(s), if any:	1		

COs	
CO 1	Explain the use of Machine Learning Models in business and understand machine learning models can be used to solve business problems.
CO 2	Compare machine learning algorithms such as supervised, unsupervised, and reinforcement learning models.
CO 3	Identify the performance of different machine learning models and compare them to optimize the results.
CO 4	Make use continuous and discrete data set to fit regression andclassification models.

Lab Experiments

Defined Course Outcomes

List of Programs

Ex No	Experiment Title	Mapped CO/COs
1	Prediction using simple linear regression	CO1
2	Prediction using multiple linear regression	CO1
3	Classification using Logistics regression	C01

4	Classification using linear discriminant analysis	C01
5	Classification using support vector machine.	CO2
6	Classification using Guassian Naïve Bayes	CO2
7	Classification using decision Tree	CO2
8	Classification using Random Forest.	C01
9	Classification using K nearest neighbour.	CO4
10	Write a program to Retrieve Data for a machine Learning project.	CO3
11	Write a program to Conduct Exploratory Data Analysis using Python	CO3
12	Write a program to Clean the Data using Python	CO4
13	Write a program for Data Modeling using Python	CO4
14	Write a program to implement multiple linear regression.	CO2
15	Write a program to scale the data and implement linear regression using sklearn.	CO2
16	Write a program to implement multiple logistic regression.	CO2
17	Write a program for graphical representation ofdata.	C01
18	Write a program to implement genetic algorithms.	CO4
19	Write a program to implement CNN.	CO3
20	Write a program to implement LSTM.	CO3

LIFE SKILLS FOR PROFESSIONALS-II

Program Name	Bachelor in Comput	er Applica	ations (BCA)
Course Name:	Course Code	L-T-P	Credits
Life Skills for Professionals - II	AEC012	3-0-0	3
Type of Course:	AEC		
Pre-requisite(s), if any: NA	,		

Course Perspective: This course is designed to equip students with essential life skills that are critical for personal and professional success. "Life Skills for Professionals-II" builds on foundational skills and introduces advanced techniques and practices that enhance personality, arithmetic proficiency, presentation capabilities, and leadership qualities. The course focuses on practical application and real-world scenarios to ensure students can effectively navigate professional environments. The course is divided into 5 modules:

- a) Personality Improvement:
- b) Ratio & Its Application
- c) Arithmetic
- d) Presentation Skills
- e) Leadership Skills

The Course Outcomes (COs): On completion of the course the participants willbe:

COs	Statements
CO 1	Understand and apply the fundamental theories, models, and principlesof communication.

CO 2	Apply ability to communicate effectively through spoken and written forms. It includes developing skills in public speaking, interpersonal communication, professional writing, and persuasive communication.
со з	Evaluate the development of teamwork and collaboration skills. It includes activities such as group projects, team-building exercises, and simulations that allow students to practice effective communication and collaboration within diverse teams
CO 4	Improve their communication skills in different professional and personal contexts, such as interviews, networking events, customer interactions, and interpersonal relationships
CO 5	Analyze ideas and information clearly and concisely through spoken language. They will develop the ability to articulate their thoughts, use appropriate vocabulary, and convey their message with clarity.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title:	Personality Improvement	No. of hours: 6
offers, Request	ing and	sking for and giving information, Offer responding to requests, Congratula ns and responding politely, Apologizing	ating people on their
Unit Number: 2	Title: F	Ratio & its application	No. of hours: 6
Content Summ Permutation & c	-	me & Work, Time & Distance, Train, B tion, Probability	oat & Stream,
Unit Number: 3	Title:	Arithmetic	No. of hours: 6

Unit Number: 4	Title: Presentation Skills	No. of hours: 6
	ary: Presentation Skills, Telephone etiquettes working, Video resumes & Mock interview sess	•
Unit Number: 5	Title: Leadership skills	No. of hours: 6

References

- >	
I)	Aggarwal, R. S. (2014). Quantitative aptitude (Revised edition).
-/	

- II) Gladwell, M. (2021). Talking to strangers.
- III) Scott, S. (2004). Fierce conversations.

Additional Readings:

Online Learning Resource:

https://onlinecourses.nptel.ac.in/noc21 hs02/preview

MINOR PROJECT-II

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Minor Project- II	ENSI252		2
Type of Course:	Project	·	

Duration:

The minor project will last for **three** months.

Project Requirements:

1. Understanding of Societal Problems:

• Students must have a basic understanding of societal problems, the concerned domain, and relevant issues.

2. Critical Thinking and Problem Formulation:

 Students are expected to think critically about formulated problems and review existing solutions.

3. Data Gathering and ETL Activities:

 Students should gather relevant data and perform ETL (Extract, Transform, Load) activities to prepare the data for analysis.

4. Innovation and Entrepreneurship Focus:

 Students should develop innovative ideas or entrepreneurial solutions to address the identified problems.

5. Implementation (Optional):

 While implementation of the proposed solutions is encouraged, it is not strictly required. The focus should be on idea development.

Guidelines:

1. Project Selection:

- Choose a societal problem relevant to the field of computer science and engineering.
- Ensure the problem is specific and well-defined.

2. Literature Review:

- Conduct a thorough review of existing literature and solutions related to the problem.
- Identify gaps in existing solutions and potential areas for further investigation.

3. Data Gathering and ETL:

- Collect relevant data from various sources.
- Perform ETL activities to clean, transform, and load the data for analysis.

4. Analysis and Critical Thinking:

- Analyze the problem critically, considering various perspectives and implications.
- Evaluate the effectiveness and limitations of current solutions.

5. Innovation and Idea Development:

- Develop innovative ideas or entrepreneurial solutions to address the identified problem.
- Focus on the feasibility, impact, and potential of the proposed solutions.

6. Documentation:

- Document the entire process, including problem identification, literature review, data gathering, ETL activities, analysis, and ideas.
- $_{\odot}$ $\,$ Use appropriate formats and standards for documentation.

7. Presentation:

- Prepare a presentation summarizing the problem, existing solutions, data analysis, and proposed ideas.
- Ensure the presentation is clear, concise, and well-structured.

Evaluation Criteria for Minor Project (Out of 100 Marks):

1. Understanding of Societal Problems (15 Marks):

- Comprehensive understanding of the problem: 15 marks
- Good understanding of the problem: 12 marks
- Basic understanding of the problem: 9 marks
- Poor understanding of the problem: 5 marks
- No understanding of the problem: 0 marks

2. Critical Thinking and Analysis (20 Marks):

- Exceptional critical thinking and analysis: 20 marks
- $_{\circ}$ Good critical thinking and analysis: 15 marks
- Moderate critical thinking and analysis: 10 marks
- Basic critical thinking and analysis: 5 marks
- Poor critical thinking and analysis: 0 marks

3. Data Gathering and ETL Activities (20 Marks):

- Comprehensive and effective ETL activities: 20 marks
- Good ETL activities: 15 marks
- Moderate ETL activities: 10 marks
- Basic ETL activities: 5 marks
- Poor ETL activities: 0 marks

4. Innovation and Idea Development (25 Marks):

- $_{\odot}$ $\,$ Highly innovative and feasible ideas: 25 marks
- Good innovative ideas: 20 marks
- $_{\circ}$ Moderate innovative ideas: 15 marks
- Basic innovative ideas: 10 marks
- Poor innovative ideas: 5 marks
- No innovative ideas: 0 marks

5. Documentation Quality (10 Marks):

- Well-structured and detailed documentation: 10 marks
- $_{\circ}$ Moderately structured documentation: 7 marks
- Poorly structured documentation: 3 marks
- No documentation: 0 marks

6. Presentation (10 Marks):

• Clear, concise, and engaging presentation: 10 marks

- Clear but less engaging presentation: 7 marks
- Somewhat clear and engaging presentation: 3 marks
- Unclear and disengaging presentation: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

1. Understand Societal Issues:

• Demonstrate a basic understanding of societal problems and relevant issues within the concerned domain.

2. Critical Thinking:

• Think critically about formulated problems and existing solutions.

3. Data Management:

 Gather relevant data and perform ETL activities to prepare the data for analysis.

4. Innovation and Entrepreneurship:

 Develop innovative ideas or entrepreneurial solutions to address identified problems.

5. Literature Review:

 Conduct comprehensive literature reviews and identify gaps in existing solutions.

6. Documentation:

 Document findings and analysis in a well-structured and appropriate format.

7. Presentation Skills:

 Present findings and analysis effectively, using clear and concise communication skills.

8. Problem Analysis:

 Analyze problems from various perspectives and evaluate the effectiveness of existing solutions.

9. Professional Development:

 Develop skills in research, analysis, documentation, and presentation, contributing to overall professional growth.

Learning Experiences

- Hands-on Project-Based Learning: Students will work on real-world societal problems, applying their technical skills in data gathering, ETL processes, and innovative problem-solving.
- Critical Thinking through Problem Formulation: Students will critically analyze problems, review literature, and evaluate existing solutions, fostering a deeper understanding of complex societal challenges.
- Collaboration and Peer Support: Group work will encourage peer collaboration, allowing students to exchange ideas and provide feedback to one another, enhancing teamwork and leadership skills.
- Innovation and Entrepreneurship Focus: The project will push students to develop novel ideas and entrepreneurial solutions, promoting creativity and out-of-the-box thinking.
- Continuous Support and Feedback: The course in charge will provide regular feedback and support throughout the project, ensuring students stay on track and improve their work iteratively.
- Use of ICT and Interactive Tools: Technology will be integrated through the use of interactive boards, Moodle LMS for resource sharing, and video lectures to aid students in understanding key project elements.
- Structured Assessments and Evaluations: Continuous assessment, presentations, and final evaluations will provide students with structured

feedback, helping them improve their critical thinking, documentation, and communication skills.

COMPETITIVE

CODING BOOTCAMP-

II

Program Name:	B. Tech (Computer Science and Engineering)		
Course Name: COMPETITIVE CODING	Course Code	L- T- P	Credits
BOOTCAMP- II		3- 0- 0	0
Type of Course:AUDIT COURSContact Hours30		SE	
Version			

Course Outcomes

CO1	Understand fundamental tree structures, including AVL trees, and their
	balancing mechanisms.
CO2	Apply graph representations (adjacency matrix and adjacency list) to solve
	basic graph traversal problems.
CO3	Implement shortest path algorithms such as Dijkstra's algorithm and
	Bellman-Ford.
CO4	Explore dynamic programming concepts, including memoization and
	tabulation, to solve classic problems.

		No. of	
Unit Number: 1	Title: Object-Oriented Programming Concepts	hours: 8	
	Concepts		
Content:			
OOP Basics: Enca	psulation, Inheritance, Polymorphism, Class Desig	n and	
Object Creation			
C++ OOP Concer	ots: Classes and Objects, Constructors/Destructors	s, Operator	
Overloading, Inher	ritance, Virtual Functions		
Java OOP Conce	pts: Classes and Objects, Constructors, Method Ov	erloading,	
Inheritance, Polym	orphism, Abstract Classes, Interfaces		
Python OOP Con	cepts: Classes and Objects, Constructors, Method	Overloading	
(via default argum	ents), Inheritance, Polymorphism, Multiple Inherit	ance	
	Title: Linked Lists, Stacks and Queues	No. of	
Unit Number: 2	The Linked Lists, Stacks and Queues	hours: 8	
Content:			
Linked Lists			
 Singly and c 	loubly linked lists: Creation, insertion, deletion, tra	iversal.	
 Key Problen 	ns: Reversing a linked list (iterative and recursiv	e), detecting	
cycles using	Floyd's cycle-finding algorithm.		
Stacks and Queues	s :		
 Stack opera 	tions: Push, pop, top, isEmpty.		
 Queue operative 	ations: Enqueue, dequeue, front, isEmpty.		
 Applications 	: Parentheses matching, queue-based problem	s (LeetCode	
challenge -	sliding window problems).		
		No. of	
Unit Number: 3	Title: Sorting & Searching	hours: 8	

Content

Basic Sorting Algorithms

- Implementing Bubble Sort, Selection Sort, Insertion Sort.
- Understanding the time complexities and use cases of each algorithm.
- Key Problems: Sorting small arrays, finding the median, custom sorting based on conditions (frequent LeetCode challenge).

Advanced Sorting Algorithms

• Implementing Merge Sort, Quick Sort, Heap Sort.

Binary Search

- Implementing binary search for sorted arrays.
- Applications: Finding an element in a sorted array, finding the position to insert an element, LeetCode challenges like searching for ranges.

Unit Number: 4	Title: Trees	No. of hours: 6
----------------	--------------	--------------------

Content:

Basic Tree Concepts

- Introduction to tree terminology and operations.
- Tree Traversals: Preorder, inorder, postorder.
- Key Problems: Printing all elements in a tree, finding the depth of a tree.

Binary Trees

- Basic operations on binary trees: Insertion, deletion, searching.
- Key Problems: Finding the height of a binary tree, counting leaf nodes, lowest common ancestor (common LeetCode challenges).

Binary Search Trees

Understanding BST properties: Every left subtree is smaller, and every right subtree is larger.

Learning Experiences:

 Interactive Lectures: Engage students with visual PPTs, encourage questions, and simplify complex concepts.

- Problem-Based Assignments: Assign theory problems and practical lab tasks (e.g., segment trees, shortest path algorithms).
- Continuous Assessment: Regular quizzes, mini-projects, and formative assessments to reinforce learning.
- Peer Collaboration: Group activities, case studies, and peer reviews for diverse perspectives.
- Feedback and Support: Instructors provide timely feedback, and students seek help as needed.
- Life-Long Learning: Foster curiosity, critical thinking, and skills beyond the syllabus.

Textbooks:

- "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- "Data Structures and Algorithms Made Easy" by Narasimha Karumanchi

Online References:

- 1. GeeksforGeeks:
 - Offers articles on advanced data structures like self-balancing trees, segment trees, tries, and more¹.
 - Link to GeeksforGeeks

2. Coursera:

- Various data structures and algorithms courses available online.
- <u>Examples include "Data Structures and Algorithms" from the University</u> of California San Diego and "Algorithms, Part I" from Princeton <u>University³</u>.
- Link to Coursera

3. Princeton University References:

- Provides a list of seminal papers and advanced resources.
- Includes textbooks like "Algorithms, 4th Edition" by Robert Sedgewick and Kevin Wayne⁴.

Lab Experiments

Problem Statement	Mapped COs
Object-Oriented Programming Concepts	
1. Design a Parking Lot System using OOP concepts (Classes, Objects, Inheritance, Polymorphism).	CO1
 Implement a Student Management System with Classes and Objects. 	CO1
3. Create a Banking System with Constructors and Destructors.	CO1
 Implement Method Overloading and Overriding in a chosen language. 	CO1
5. Demonstrate Multiple Inheritance with a practical example.	CO1
6. Design a Library Management System with OOP principles.	CO1
7. Use Virtual Functions to implement polymorphism.	CO1

Problem Statement	Mapped COs
8. Implement Abstract Classes and Interfaces for a Payment System.	CO1
9. Create a simple calculator with Operator Overloading.	CO1
10. Build a Polymorphic class hierarchy (e.g., Shapes) to showcase polymorphism.	CO1
Linked Lists, Stacks, and Queues	
11. Reverse a Linked List (Iterative and Recursive).	CO2
12. Detect a cycle in a Linked List using Floyd's Cycle-Finding Algorithm.	CO2
13. Implement basic operations on a Singly Linked List (Insertion, Deletion).	CO2
14. Implement and traverse a Doubly Linked List.	CO2
15. Implement Stack operations (Push, Pop, Top) using arrays or linked lists.	CO2
16. Implement Queue operations (Enqueue, Dequeue, Front) using arrays or linked lists.	CO2
17. Solve the Parentheses Matching problem using Stack.	CO2
18. Implement Sliding Window Maximum using Deque.	CO2
19. Check for balanced parentheses using Stack.	CO2
20. Design a Circular Queue using linked list or array.	CO2
Sorting & Searching	
21. Implement Bubble Sort and analyze its time complexity.	CO3

Problem Statement	Mapped COs
22. Implement Merge Sort to sort an array of integers.	CO3
23. Find the Kth largest element in an array using Quick Sort.	CO3
24. Perform Binary Search to find an element in a sorted array.	CO3
25. Implement Heap Sort to sort a list of elements.	CO3
26. Find the position to insert an element in a sorted array using Binary Search.	CO3
27. Implement a custom sort based on frequency of elements.	CO3
28. Compare sorting results using Insertion Sort and Bubble Sort.	CO3
Trees	
29. Perform Preorder, Inorder, and Postorder Traversal on a Binary Tree.	CO4
30. Find the Lowest Common Ancestor in a Binary Search Tree.	CO4

Problem Statement	Mapped COs
Trees	
31. Implement an algorithm to check if a Binary Tree is balanced.	CO4
32. Determine if two Binary Trees are identical.	CO4
33. Find the maximum path sum in a Binary Tree.	CO4
34. Convert a Binary Search Tree to a Greater Tree (where each node's value is replaced by the sum of all greater values).	CO4

Problem Statement	Mapped COs
35. Count the number of nodes in a complete Binary Tree.	CO4
36. Flatten a Binary Tree to a linked list using preorder traversal.	CO4
37. Serialize and deserialize a Binary Tree.	CO4
38. Find the diameter of a Binary Tree (the longest path between any two nodes).	CO4
39. Check if a Binary Tree is a subtree of another Binary Tree.	CO4
40. Find the level order traversal of a Binary Tree (Breadth-First Search).	CO4

Semester V

139 | Page

ANALYSIS AND DESIGN OFALGORITHMS

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Analysis and Design of Algorithms	ENCS202	4-0-0	4
Type of Course:	Major		
Pre-requisite(s), if a	ny: - Data Structure		

Course Perspective The course provides a comprehensive introduction to the fundamental concepts of algorithm analysis and design, essential for various fields such as computer science, engineering, data science, and artificial intelligence. This course equips students with the tools to understand, analyze, and develop efficient algorithms for solving complex computational problems. By covering both theoretical foundations and practical applications, the course ensures a balanced approach to learning. The course is divided into 5 modules:

- a) Introduction and Complexity Analysis
- b) Divide and Conquer, Greedy Algorithms, and Dynamic Programming
- c) Graph Algorithms
- d) Advanced Algorithms and Techniques
- e) Advanced Topics and Implementation Techniques

The Course Outcomes (COs)

COs	Statements						
	Understand complexities.	fundamental	algorithmic	concepts	and	analyze	their

CO 2	Analyze and evaluate the performance of various algorithms.
CO 3	Design efficient algorithms considering both time and space complexities.
CO 4	Apply algorithmic problem-solving strategies to a variety of computational problems.
CO 5	Develop skills to implement and optimize algorithms for real-world applications.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction and Complexity Analysis	No. of hours: 10			
Content Summar	Content Summary:				
Introduction to Algorithms : Definition, importance, specification and role in problem-solving.					
Algorithm Analysis : RAM computational models, Time and space complexity, Asymptotic Notations, best, average, and worst-case analysis, Performance measurement of algorithms, rate of growth of algorithms					
Recurrence Relations : Solving recurrences using substitution, recursion tree, and mastertheorem.					
Unit Number: 2	Title: Divide and Conquer, GreedyAlgorithms, and Dynamic Programming	No. of hours: 10			
Content Summary:					
Divide and Conquer : General method, Merge Sort, Quick Sort, Binary Search, Strassen's Matrix Multiplication, finding maximum and minimum.					

Greedy Algorithms: Concept and characteristics, Fractional Knapsack, Activity Selection, Huffman Coding.

Dynamic Programming: General Method, Longest Common Subsequence, 0/1 Knapsackproblem, Matrix Chain Multiplication, Travelling salesman problem.

Unit 3	Number:	Title: Graph Algorithms	No. of hours: 10

Content Summary:

Graph Representation: Adjacency matrix, adjacency list.

Graph Traversal Algorithms: Depth First Search (DFS), Breadth First Search (BFS), Applications of graph (Topological sorting).

Shortest Path Algorithms: Dijkstra's algorithm, Bellman-Ford algorithm, Floyd-Warshallalgorithm.

Minimum Spanning Tree Algorithms: Kruskal's algorithm, Prim's algorithm.

Unit	Number:	Title:	Advanced	Algorithms	and	No. of hours: 10
4		Techniques				
Content Summary						

Content Summary:

Backtracking: Concept, examples (N-Queens problem, Sum of subsets).

Branch and Bound: Concept, examples (Traveling Salesman Problem, 0/1 KnapsackProblem).

String Matching Algorithms: Naive algorithm, Rabin-Karp algorithm, String matching withfinite automata, Knuth-Morris-Pratt (KMP) algorithm.

Introduction to NP-Completeness: The class P and NP, Polynomial time, NP-complete and NP-hard.

Introduction to Approximation Algorithms and Randomized Algorithms

Text Books

- 1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles ELieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Fundamentals of Algorithms E. Horowitz et al.

Additional Readings:

Online Learning Resources :

I) MIT OpenCourseWare - Introduction to Algorithms (6.006)

- a. A comprehensive resource from MIT covering fundamental and advanced algorithms.
- b. Link: <u>MIT OpenCourseWare Introduction to Algorithms</u>

II) HackerRank - Algorithms Practice

a. Provides a platform to practice and compete in coding challenges related to algorithms.

b. Link: HackerRank - Algorithms Practice

III) LeetCode - Algorithm Problems

- a. A platform offering a vast array of problems to practice algorithms anddata structures.
- b. Link: <u>LeetCode Algorithm Problems</u>

IV) TopCoder - Algorithm Tutorials

- a. Detailed tutorials and practice problems on a wide range of algorithmictopics.
- b. Link: TopCoder Algorithm Tutorials

ANALYSIS AND DESIGN OF ALGORITHMS LAB

Program Name	Bachelor in Compu	ter Applicat	ions (BCA)
Course Name:	Course Code	L-T-P	Credits
Analysis and Design of Algorithms Lab	ENCS256	0-0-2	1
Type of Course:	Major		
Pre-requisite(s), if any: - Data Structure			

Defined Course Outcomes

COs	Statements
CO 1	Analyze the time and space complexity of algorithms, demonstrating anunderstanding of asymptotic notations and performance metrics.
CO 2	Implement and compare sorting algorithms, such as bubble sort and insertion sort, and apply the divide and conquer technique to algorithms like merge sort and quick sort
CO 3	Solve optimization problems using greedy and dynamic programming algorithms, such as the fractional knapsack problem and longest commonsubsequence
CO 4	Develop graph algorithms for traversal, shortest path, and minimum spanning tree, applying techniques like DFS, BFS, Dijkstra's, and Kruskal'salgorithms
CO 5	Implement advanced algorithms for problems like N-Queens, traveling salesman, and string matching using backtracking, branch and bound, and pattern matching techniques

Proposed Lab Experiments

S.N	Lab Task	Mapped CO/COs
	Project 1: Case Study on Algorithm Efficiency	C01
	Problem Statement: Conduct a case study on the efficiency of different sortingalgorithms (e.g., Bubble Sort, Merge Sort, Quick Sort). Analyze and compare their	
1	time and space complexities in best, average, and worst-case scenarios. Presentyour findings in a detailed report with visual aids (graphs, charts).	
	Project 2: Performance Measurement Tool	CO1
2	Problem Statement: Develop a tool in your preferred programming language to measure the performance of various algorithms. The tool should allow users to input an algorithm, run it with different input sizes, and display the time and space complexities. Implement a few sample algorithms (e.g., linear search, binary search) to demonstrate the tool's capabilities.	
	Project 3: Resource Allocation System	CO2
3	Problem Statement: Develop a resource allocation system for a fictional company using greedy algorithms. Implement solutions for problems such as the Fractional Knapsack problem (for resource allocation), Activity Selection problem (for task scheduling), and Huffman Coding (for data compression). The system should allow users to input data and display the optimal allocation/selection in real-time.	
	Project 4: Dynamic Programming Solver	CO2
4	Problem Statement: Build a web application that solves dynamic programming problems. Implement solutions for the Longest Common Subsequence, 0/1 Knapsack Problem, and Matrix Chain Multiplication. Allow users to input problem parameters and visualize the step-by-step solution process, including the dynamic programmingtable updates.	
	Project 5: Smart City Traffic Management System	CO3
	Problem Statement: Develop a smart traffic management system for a city to optimize traffic flow and reduce congestion. The system will use graph algorithms to model the city's road network and find the shortest paths, optimal routes, and manage traffic signals efficiently.	

145 | Page

Problem Statement: Create an intelligent scheduling system for a	
university to optimize the allocation of classes, rooms, and faculty	
schedules. The system should use advanced algorithms like	
backtracking, branch and bound, and approximation algorithms to ensure efficient and conflict-free scheduling.	
algorithms to ensure encient and connict-nee scheduling.	

INTRODUCTION TO COMPUTER ORGANIZATION & ARCHITECTURE

Program Name	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Introduction to Computer Organization & Architecture	ENCA302	3-1-0	4
Type of Course:	Major		
Pre-requisite(s), if any: Concepts of Digital Electronics			

Course Perspective: The course provides an in-depth understanding of the structural and operational principles of computer systems. It explores the intricate details of computer architecture, bridging the gap between high-level programming and hardware design. Students will learn about the functional units of a computer, instruction set architectures, processor design, memory hierarchy, and I/O systems. This knowledge is crucial for designing efficient, high-performance computing systems and understanding the trade-offs in hardware and software design. The course is divided into 4 units:

- a) Introduction
- b) Instruction Set Architecture (RISC-V)
- c) The Processor
- d) Memory hierarchy, Storage, and I/O

Course Outcomes (COs): On completion of the course the participants will be:

COs	Statements
CO 1	Understand the basics of instructions sets and their impact on processor design
CO 2	Demonstrate an understanding of the design of the functional units of a digital computer system
CO 3	Evaluate cost performance and design trade-offs in designing and

	constructing a computer processor including memory.		
CO 4	Design a pipeline for consistent execution of instructions with minimum hazards		
CO 5	Manipulate representations of numbers stored in digital computers using I/O devices and store them into memory		

The CO = Course outcomes: A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction	No. of hours: 10		
Content Summary: Role of abstraction, basic functional units of a computer, Von-Neumann model of computation, A note on Moore's law, Notion of IPC, and performance. Data representation and basic operations.				
Unit Number: 2	Title: Instruction Set Architecture (RISC-V)	No. of hours: 10		
Content Summary: CPU registers, instruction format and encoding, addressing modes, instruction set, instruction types, instruction decoding and execution, basic instruction cycle, Reduced Instruction Set Computer (RISC), Complex Instruction Set Computer (CISC), RISC-V instructions; X86 Instruction set.				
Unit Number: 3	Title: The Processor	No. of hours: 10		
Content Summary: Revisiting clocking methodology, Amdahl's law, Building a data path and control, single cycle processor, multi-cycle processor, instruction pipelining, Notion of ILP, data and control hazards and their mitigations.				
Unit Number: 4	Title: Memory hierarchy, Storage and I/O	No. of hours: 10		
Content Summary: SRAM/DRAM, locality of reference, Caching: different indexing mechanisms, Trade- offs related to block size, associativity, and cache size, Processor-cache interactions for a read/write request, basic optimizations like writethrough/write- back caches, Average memory access time, Cache replacement policies (LRU),				

Memory interleaving.

Introduction to magnetic disks (notion of tracks, sectors), flash memory. I/O mapped, and memory mapped I/O. I/O data transfer techniques: programmed I/O, Interrupt-driven I/O, and DMA.

References

- **R 1.** "Computer Organization & Architecture", Smruti Ranjan Sarangi, McGraw Hill
- **R 2.** "Computer System Architecture", Mano M. Morris, Pearson.
- **R 3.** "Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraHill Higher Education
- **R 4.** "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill
- **R 5.** "Computer Organization and Architecture: Designing for Performance", 10th Edition by William Stallings, Pearson Education.

Additional Readings: Specify

Self-Learning Components:

Online Learning References

- 1. **Coursera Computer Organization and Architecture**
- Link: <u>Coursera</u>

• **Description:** This course provides a comprehensive overview of computer architecture, including data representation, instruction set architectures, and processor design.

2. edX - Computer Architecture

• Link: <u>edX</u>

• **Description:** Offered by the University of British Columbia, this course covers the fundamentals of computer architecture, including memory hierarchy, instruction sets, and performance optimization.

3. MIT OpenCourseWare - Computer System Engineering

• Link: <u>MIT OCW</u>

• **Description:** This course provides a deep dive into computer system architecture, exploring processor design, memory systems, and parallel processing.

4. Khan Academy - Computer Science

Link: <u>Khan Academy</u>

• **Description:** Khan Academy offers tutorials on the basics of computer architecture, including the Von Neumann architecture, data representation, and CPU design.

5. **GeeksforGeeks - Computer Organization and Architecture**

Link: <u>GeeksforGeeks</u>

• **Description:** GeeksforGeeks provides detailed tutorials on various topics in computer organization and architecture, such as instruction sets, pipelining, and memory hierarchy.

6. **YouTube - Computer Architecture Lectures**

Link: <u>YouTube</u>

• **Description:** YouTube hosts numerous lectures and tutorials on computer architecture, covering a wide range of topics from basic concepts to advanced processor design.

7. NPTEL - Computer Architecture

• Link: <u>NPTEL</u>

• **Description:** This course from NPTEL covers the principles of computer architecture, including instruction sets, CPU design, and memory systems, with a focus on practical applications.

NATURAL LANGUAGE PROCESSING

Program Name:	Bachelor in Computer Applications (BCA)			
Course Name:	Course Code	L-T-P	Credits	
NATURAL LANGUAGE PROCESSING	ENSP302	4-0-0	4	
Type of Course:	Minor (Department E	Elective II)		
Pre-requisite(s), if	f any: Strong programm	ning skills, particular	ly in Python.	

Course Perspective: This course offers a comprehensive introduction to the principles and techniques of Natural Language Processing (NLP). It bridges the gap between theoretical linguistics and practical implementation using machine learning and deep learning algorithms. NLP is pivotal in developing applications that can interpret and respond to human language, impacting areas such as artificial intelligence, data analysis, and information retrieval. The course emphasizes hands-on learning through real-world applications, ensuring that students gain practical skills in processing and analyzing natural language. The course is divided into 4 modules:

- Foundations of Natural Language Processing
- Machine & Deep Learning in Natural Language Processing
- Advanced Text and Speech Processing
- Ethics, Fairness, and Practical Applications in NLP

The Course Outcomes (COs): On completion of the course the participants willbe:

COs	Statements
CO 1	Grasp NLP fundamentals, resolve linguistic ambiguities, and employML/DL in NLP for both text and speech.

CO 2	Apply techniques for processing and analyzing natural language todevelop intelligent interpretation systems.
CO 3	Design and assess advanced NLP models for essential tasks, utilizing transformers, GRUs, and more.
CO 4	Innovate with NLP and speech recognition for real-world applications, incorporating cutting-edge concepts.
CO 5	Evaluate NLP and speech technologies' fairness and ethics, striving for inclusive and meaningful solutions.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Foundations of Natural LanguageProcessing	No. of hours: 10		
Content Summary:				
Overview of NLP and its applications, Basic text processing and analysis, Introduction to Python for NLP, Language modeling: N-grams, smoothing techniques, Morphology and Parts of Speech (PoS) Tagging, Syntax: Probabilistic Context-Free Grammars (PCFGs), Dependency Parsing, Lexical semantics and Word Sense Disambiguation, Distributional semantics: Vector space models, Word2Vec, Introduction to GloVe for				
•	n, Topic Models: Latent Dirichlet Allocation Title: Machine & Deep	(LDA).		
Unit Number: 2	Learning inNatural Language Processing	No. of hours: 12		
Content Summary: Introduction to Neural Networks for NLP, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, Introduction to Gated Recurrent Units (GRUs)and their comparison with LSTMs, Deep Learning Models: Basic to Advanced Architectures, Neural & Pre-Trained Language Models: Introduction and Applications, Advanced Pre-training Techniques for Language Models, Generative models & Beyond: Few-Shot Learning, Prompt Learning, and Applications, Recursive Neural Networks.				

Unit Number: 3	Title: Advanced Text and Speech Processing	No. of hours: 10	
Content Sum			
Advanced text SVMs, alongs summarization CNNs, challeng covers the bas	Advanced text classification techniques using Naïve Bayes, Logistic Regression, and SVMs, alongside applications in sentiment analysis, opinion mining, and text summarization. It includes N-gram feature applications and enhancements through CNNs, challenges in multilingual NLP, and advanced entity linking. The section also covers the basics of speech recognition and synthesis, speech-to-text and text-to-speech technologies, and speaker recognition and verification.		
UnitTitle: Ethics, Fairness, and PracticalNumber: 4Applications in NLPNo. of hours:			

No. of hours: 8

Content Summary:

Number: 4

Fairness and ethical considerations in NLP, with a focus on developing real-world NLP solutions through application-oriented projects. Topics include spelling correction, language modeling for robust applications, and ethical speech recognition system design. The syllabus also explores multilingual speech processing, applications of large language models in creative text generation, summarization, and code generation. Additionally, practical applications of speech recognition in assistive technologies, automated customer service, and real-time transcription services are covered.

Text Books:

- Daniel Jurafsky and James H. Martin, Speech and Language Processing: An 1. Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Pearson Education India.
- 2. Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processingwith Pvthon, O'Reilly Media.

References

- 1. "Speech and Language Processing" by Dan Jurafsky and James H. Martin
- 2. "Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python" by Hobson Lane, Cole Howard, and Hannes Hapke
- 3. "Neural Network Methods for Natural Language Processing" by Yoav Goldberg
- 4. "Introduction to Information Retrieval" by Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze
- 5. "Practical Natural Language Processing: A Comprehensive Guide to Building

Real-World NLP Systems" by Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana

Additional Readings:

Online Learning Resources:

1. Stanford University - Natural Language Processing with DeepLearning (CS224N)

- Offered by Stanford University, this course covers the foundational concepts of NLP along with the application of deep learning models inNLP tasks. The lectures are available for free.
- Link: <u>Stanford CS224N</u>

2. NLTK Book - Natural Language Processing with Python

- An excellent resource for beginners, this book provides a practical introduction to NLP with Python, using the Natural Language Toolkit(NLTK). It's available for free online.
- Link: <u>NLTK Book</u>

3. fast.ai - Practical Deep Learning for Coders

- Though not exclusively focused on NLP, this course includes several lessons on applying deep learning to natural language processing. It ispractical, with a focus on coding and real-world applications.
- Link: <u>fast.ai Course</u>

Open-Source Society University (OSSU)

I) OSSU Computer Science

- a. OSSU provides an open-source curriculum for learning computer science. While it covers a broad range of topics in computer science, it includes resources for learning about artificial intelligence and machinelearning, which are relevant to students interested in NLP.
- b. Link: OSSU Computer Science

NATURAL LANGUAGE PROCESSING LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
NATURAL LANGUAGE PROCESSING LAB	ENSP352	0-0-2	1
Type of Course:	Minor (Department E	elective II)	
Pre-requisite(s), if	any: Strong programn	ning skills, particular	ly in Python.

Proposed Lab

ExperimentsDefined Course Outcomes

COs	
CO 1	Demonstrate proficiency in implementing and utilizing basic and advanced natural language processing (NLP) techniques for text analysis and processing.
CO 2	Develop, fine-tune, and evaluate machine learning and deep learning models for various NLP tasks, including text classification, named entity recognition, and sentiment analysis.
CO 3	Implement and assess advanced text and speech processing models, focusing on performance improvement and practical applications in real-world scenarios.
CO 4	Analyze and address ethical considerations, fairness, and privacy implications in NLP applications, ensuring responsible and unbiased technology deployment.

List of Experiments

Project Title	Project Statement	CO Mapped
Text Processing and Analysis Tool	Develop a Python-based tool for basic text processing and analysis. Implement functionalities such as tokenization, stemming, lemmatization, and Parts of Speech (PoS) tagging. Include language modeling using N-grams and smoothing techniques.	CO1
Word Representation and Topic Modeling	Create a Python application to perform word representation using Word2Vec and GloVe. Implement a topic modeling system using Latent Dirichlet Allocation (LDA) to analyze and categorize a given corpus of text data.	
Sentiment Analysis using Recurrent Neural Networks (RNNs)	Recurrent Neural Networks (RNNs) and Long Snort- Term Memory (ISTM) networks, Train the model on	CO2
Language Model with Gated Recurrent Units (GRUs)	based models on the same dataset. Implement	CO2
Classification and Sentiment Analysis	Implement text classification techniques using Naïve Bayes, Logistic Regression, and SVMs. Apply these techniques to sentiment analysis, opinion mining, and text summarization tasks. Enhance feature extraction using N-grams and CNNs.	

Project Title	Project Statement	CO Mapped
Speech Recognition and Synthesis System	Develop a basic speech recognition and synthesis system. Implement speech-to-text and text-to- speech functionalities using available libraries. Extend the system to include speaker recognition and verification.	
for Fair Language Modeling	Design an NLP system focusing on ethical considerations and fairness. Implement language modeling for robust applications like spelling correction. Ensure the system avoids biases and treats all user inputs fairly.	
Automated Customer Service	Create an automated customer service application using advanced language models. Implement functionalities such as real-time transcription services and multilingual speech processing. Ensure ethical and fair use of NLP technologies.	CO4

LIFE SKILLS FOR PROFESSIONALS-III

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Life Skills for Professionals -III	AEC013	3-0-0	3
Type of Course:	AEC		

Course Perspective. The course is designed to equip students with essential skills for both professional and personal development. This course emphasizes the importance of data interpretation, logical reasoning, stress management, and employability skills, ensuring students are well-prepared to tackle real-world challenges. Through a combination of theoretical knowledge and practical exercises, students will enhance their analytical abilities, problem-solving skills, and emotional intelligence. The course is structured into five comprehensive modules, each targeting a specific skill set vital for professional success and personal well-being:

- a) Data Interpretation
- b) Logical Reasoning
- c) Logical & Non-verbal Reasoning
- d) Understanding Stress
- e) Employability Skills

The Course Outcomes (COs): On completion of the course the

participants willbe:

COs Statements

CO 1	Understand their critical thinking skills and become adept at analyzing and evaluating information, identifying problems, generating innovative solutions, and making informed decisions.	
CO 2	Apply digital literacy skills necessary for the modern workplace and become proficient in using online platforms relevant to their field.	
CO 3	Evaluate Contribute positively, respect different perspectives, resolve conflicts, and achieve shared goals.	
CO 4	Improve skills related to career planning, job search strategies, and personal branding	
CO 5	Create leadership skills and to motivate and inspire others, manage projects effectively, and demonstrate a proactive and responsible approach to their spoken language.	

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Data interpretation	No. of hours: 6		
Content Summary: Table chart, Line graph, Bar graph, Pie chart				
Unit Number: 2	Title: Logical Reasoning	No. of hours: 6		
Content Summary: Coding & Decoding, Sitting arrangement, Calendar, Clock, Direction Sense, Blood relation, Syllogism.				

Unit Number: 3	Title:	Logical & Non-verbal reasoning	No. of hours: 6
Content Sumr Non-verbal Rea	-	eries, Puzzle Text, Statement & Arg	uments, Cube & Dice,

Unit Number: 4	Title: Understanding Stress	No. of hours: 6
Content Sumn	nary:	
	Stress (i) Introduction to stress: Me	

Distress, (ii) Types of stress: Acute stress, Episodic Acute stress and chronic stress, signs and Symptoms

Sources of stress (i) Psychological, Social, Environmental (ii) Academic, Family and Work stress

Impact of stress

Unit Number: 5	Title: Employability skills	No. of hours: 6
Content Summary: Identifying job openings, enhancing interpersonal skills, including teamwork, Applying for a job, Preparing Cover letters, preparing a		
CV/Resume and Effective Profiling, Group Discussions, Preparing for and Facing a Job Interview, Mock Interview, Feed Back – Improvement		

References

- 1. Aggarwal, R. S. (2014). Quantitative aptitude (Revised edition).
- 2. Gladwell, M. (2021). Talking to strangers.
- 3. Scott, S. (2004). Fierce conversations.

Introduction to Computer Networks

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Introduction to		- · ·	Cicuits
Computer Networks			
	ENCA304	4-0-0	4
Type of Course:	Major		
Pre-requisite(s), if a structures	ny: Basics of Commun	ication Engine	ering and Data

Course Perspective: The course provides a comprehensive introduction to the fundamental concepts and principles of computer networking. Students will gain an in-depth understanding of how data communication works, the different types of network topologies, and the protocols that govern data exchange over networks. The course covers key aspects such as network hardware and software components, network administration, and protocol selection for various communication services. By exploring topics such as the OSI model, error detection and correction, IP addressing, routing protocols, and network applications, students will develop the skills necessary to design, implement, and manage computer networks effectively. The course is divided into 4 modules:

- a) Evolution of Computer Networking
- b) Data Link Layer Design
- c) Introduction to Network Layer and Transport Services
- d) Application Layer

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understand the fundamental concepts and principles of computer networks.
CO 2	Demonstrate knowledge of network hardware and software components.
со з	Develop skills in network administration and management.
CO 4	Choose appropriate protocol for desired communication service.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Evolution of Computer Networking	No. of hours: 10		
Content Summary: Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model; packet switching; circuit switching;				
Unit Number: 2	Unit Number: 2 Title: Data Link Layer No. of hours: 10			
Content Summary: Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, SlidingWindow, Piggybacking, Random Access				
Unit Number: 3	Title: Introduction to Network Layer and Transport Services	No. of hours: 10		

Content Summary:

ARP, RARP, BOC protocols. Transpo Datagram Protoco	vitching, Logical addressing – IPV4, TP and DHCP–Delivery, Forwardi ort Layer: Process to Process	ing and Unicast Routing
Unit Number: 4	Title: Application Layer	No. of 10 hours:
	y: Domain Name Space (DNS), DDNS, 1 VW, HTTP, SNMP, Bluetooth, Firewa	

Textbooks:

T1: " Data Communication and Networking", 5th Edition, Behrouz A. Forouzan, McGraw-Hill, 2012.

T2: "Computer Networks", Andrew S. Tanenbaum and David J. Wetherall, Pearson, 5th Edition, 2010.

T3: "Computer Networking A Top-Down Approach". 5th Edition, James F. Kurose-Keith W. Ross (Pearson).

Additional Readings:

Online Learning References

I) MIT OpenCourseWare - Computer Networks

- a. Link: MIT OCW
- b. **Description:** This course provides a thorough exploration of computernetworks, focusing on network design, protocol layers, and network management.

II) GeeksforGeeks - Computer Networks

- a. Link: <u>GeeksforGeeks</u>
- b. **Description:** GeeksforGeeks provides detailed tutorials on various aspects of computer networks, such as the OSI model, data link layer, network layer, and transport layer protocols.

III) NPTEL - Computer Networks

- a. Link: <u>NPTEL</u>
- b. **Description:** This course from NPTEL provides a comprehensive overview of computer networking, including topics like error detection, IP addressing, and routing protocols.

COMPUTER NETWORKS LAB

urse Code	L-T-P	Credits
NCS352	0-0-2	1
	NCS352	INCS352 0-0-2

Proposed Lab ExperimentsDefined Course Outcomes

COs	
CO 1	Apply fundamental networking concepts and techniques to develop and analyze network topologies, protocols, and error detection mechanisms.
CO 2	Design and implement network protocols and architectures for efficient data communication and management in various environments.
CO 3	Utilize advanced networking techniques to implement, monitor, and optimize communication systems for real-time and multimedia applications.
CO 4	Integrate IoT devices and develop smart systems using networking principles for automation and efficient data management.

Ex. No	Experiment Title	Mapped CO/COs
1	Project 1: Network Topology Design Problem Statement: Design a small office network with various connection topologies (e.g., star, ring, mesh). Implement the network using a network simulation tool like Cisco Packet Tracer or GNS3. Document the design process, including the selection of topologies, protocols, and physical media. Analyze the packet delay, loss, and end-to-end throughput for different topologies.	CO 1
2	Project 2: OSI Model Simulation Problem Statement: Create a simulation of the OSI model layers using a programming language of your choice (e.g., Python). Implement basic functionalities for each layer (e.g., data encapsulation, addressing, routing). Demonstrate how data flows from the application layer to the physical layer and back, showing the role of each layer in the process.	CO 1
3	Project 3: Error Detection and Correction Simulator Problem Statement: Develop a simulator that demonstrates various error detection and correction techniques, including block coding, Hamming Distance, and CRC. Implement flow control and error control protocols such as Stop and Wait, Go-back-N ARQ, and Selective Repeat ARQ. Allow users to input data and visualize how errors are detected and corrected.	CO2
4	Project 4: IPV4 and IPV6 Addressing and Routing Problem Statement: Design a network that uses both IPv4 and IPv6 addressing schemes. Implement and configure routing protocols such as OSPF and BGP for both addressing schemes using a network simulator. Demonstrate the address mapping	CO 4

	techniques (ARP, RARP, BOOTP, and DHCP) and analyze the routing process.	
	Project 7: DNS and HTTP Implementation	
5	Problem Statement : Create a basic implementation of DNS and HTTP protocols. Develop a DNS server that resolves domain names to IP addresses and an HTTP server that serves web pages to clients. Demonstrate the interaction between clients and servers, including domain name resolution and HTTP request/response.	04
6	Project 8: Network Security and Cryptography Problem Statement: Implement basic network security mechanisms, including firewalls and cryptographic algorithms. Develop a firewall simulation that filters network traffic based on predefined rules. Implement cryptographic techniques such as symmetric and asymmetric encryption to secure data transmission. Demonstrate the effectiveness of these security measures using sample network scenarios.	

INTRODUCTION OF NEURAL NETWORK AND DEEP LEARNING

Bachelor in Computer Applications (BCA)		
Course Code	L-T-P	Credit s
ENCS306	4-0-0	4
Major		
	Course Code ENCS306	Course CodeL-T-PENCS3064-0-0

Course Perspective: This course provides a comprehensive introduction to the fundamental concepts of neural networks and deep learning, which are crucial for the development of intelligent systems and advanced data analysis. Students will explore core topics including the basic structure and function of neural networks, feed forward neural networks, deep learning techniques, and probabilistic neural networks. The course emphasizes both theoretical understanding and practical implementation, preparing students to tackle real-world problems using advanced neural network models. The course is divided into 4 modules:

- a) Introduction to Neural Networks and Linear Models
- b) Supervised and Unsupervised Neural Networks
- c) Deep learning and Regularization for Deep Learning
- d) Optimization for Train Deep Models

COs	Statements
	Understand key concepts of neural networks and deep learning, including ANNsand their biological equivalents.
CO 2	Apply the Learning Networks in modeling real world systems

со з	Analyze suitable architectures and hyperparameters for various neural networks to optimize tasks like image classification and NLP
CO 4	Use an efficient algorithm for Deep Models and apply optimization strategiesfor large scale applications

The Course Outcomes (COs): On completion of the course the participants will be able to:

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Neural Networks	No. of hours: 10	
Content: Human Brain, Model of an artificial Neuron, Basic concepts of Neural Networks, Fundamentals of Biological Neural Network and Artificial Neural Network, Evolution and characteristics of Neural Networks, Learning Methods – supervised, unsupervised and reinforcement, Taxonomy of Neural Network Architectures.			
Unit Number: 2	Title: Supervised and Unsupervised Neural Networks	No. of hours: 10	
Networks, Adaptiv Networks. Trainin Introduction, Fixe Kohonen Self-Org	vised learning: - Supervised Learning Ne ve Linear Neuron, Back-propagation Network. g Algorithms for pattern association. Unsup ed Weight Competitive Nets, Maxnet, H anizing Feature Maps, quantization, Counter Propagation Networks, A	Associative Memory pervised learning: - lamming Network,	
Unit Number: 3	Title: Deep learning and Regularizationfor Deep Learning	No. of hours: 10	
Feed - forward r Design, Back- Pro for Deep Learni Optimization, R Augmentation, No Early Stopping, P	ction to Deep Learning, Historical Trends in Intervorks, Gradient-Based learning, Hidden opagation and Other Differentiation Algorithm ng: Parameter norm Penalties, Norm Penal egularization and Under-Constrained Forse Robustness, Semi-Supervised learning, arameter Typing and Parameter Sharing, ations, Bagging and other Ensemble Methods	Units, Architecture ns, Regularization ties as Constrained Problems, Dataset	
Unit Number: 4	Title: Optimization for Train Deep Models	No. of hours: 10	

Content:

Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second Order Methods, Optimization Strategies and Meta-Algorithms. **Applications:** Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing recent trends and research in deep learning.

Textbooks:

T1: Haykin S., Neural Network and Machine Learning, Prentice Hall Pearson (2009),3rd ed.

T2: Goodfellow L., Bengio Y. and Courville A., Deep Learning, MIT Press (2016).

References

•

- I) "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- II) "Neural Networks and Deep Learning: A Textbook" by Charu C. Aggarwal
- III) "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
- IV) "Deep Learning for Computer Vision" by Rajalingappaa Shanmugamani

Online Learning References

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- Deep Learning Book
- 2. Neural Networks and Deep Learning by Michael Nielsen
- Neural Networks and Deep Learning
- 3. CS231n: Convolutional Neural Networks for Visual Recognition by Stanford University
- <u>CS231n Course</u>
- 4. Deep Learning Specialization by Andrew Ng on Coursera
 - Deep Learning Specialization
- 5. Introduction to Deep Learning by MIT OpenCourseWare
 - MIT OpenCourseWare

INTRODUCTION TO NEURAL NETWORKS & DEEP LEARNING LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Introduction to	Course Code	L-T-P	Credits
Neural Network and Deep learning Lab	ENCS354	0-0-2	1
Type of Course:	Major		
Pre-requisite(s), if a	ıy:		

Defined Course Outcomes

COs	
CO 1	Demonstrate the ability to implement and analyze basic artificial neural network models and classical machine learning algorithms.
CO 2	Develop and evaluate advanced neural network architectures and unsupervised learning models for complex data analysis.
CO 3	Apply deep learning techniques to real-world applications, including image and speech recognition, and optimize model performance.
CO 4	Implement and optimize neural network models using advanced techniques such as adaptive learning rates, regularization, and meta-optimization for enhanced performance.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
P1	 Project 1: Neuron Model Simulation Problem Statement: Develop a simulation of an artificial neuron using a programming language like Python. Implement the basic concepts of neural networks, including the neuron model, activation functions, and learning methods. Compare the behavior of artificial neurons with biological neural networks through visualizations and data analysis. 	co 1
P2	Project 2: Supervised Learning Network Implementation Problem Statement: Implement a supervised learning neural network using Python and libraries such as TensorFlow or PyTorch. Train the network using the Perceptron, Adaptive Linear Neuron, and Back-propagation algorithms on a dataset (e.g., MNIST for digit recognition). Evaluate the performance of each algorithm and present your results.	CO 2
Ρ3	Project 3: Unsupervised Learning Network Implementation Problem Statement: Implement an unsupervised learning neural network using Python and libraries such as TensorFlow or PyTorch. Train the network using algorithms like Kohonen Self-Organizing Feature Maps and Learning Vector Quantization on a dataset (e.g., Iris dataset for clustering). Evaluate the network's ability to learn patterns without labeled data and present your results	
P4	Project 4: Deep Feed-Forward Network DevelopmentProblem Statement: Develop a deep feed-forward neural networkusing Python and TensorFlow or PyTorch. Train the network on adataset (e.g., CIFAR-10 for image classification) and implementvarious regularization techniques such as parameter norm	CO 4

	penalties, dataset augmentation, and early stopping. Analyze the impact of these techniques on the model's performance and	
	generalization.	
Р5	Project 5: Optimization Algorithm Comparison	
	Problem Statement: Implement and compare various optimization algorithms, including basic algorithms, adaptive learning rate algorithms, and approximate second-order methods. Train a deep learning model on a dataset (e.g., ImageNet for large-scale image recognition) using these algorithms. Evaluate and present the effectiveness of each optimization strategy in terms of convergence speed and model accuracy.	CO4
P6	Project 8: Real-World Application Development Problem Statement: Develop a deep learning application for a real-world problem in computer vision, speech recognition, or natural language processing. Use advanced optimization strategies and meta-algorithms to enhance the model's performance. Document the challenges faced during model training and how optimization techniques helped overcome these challenges. Present a comprehensive report and demonstration of your application.	CO4

Online Learning References

- 1. Deep Learning Specialization by Andrew Ng on Coursera
- Deep Learning Specialization
- 2. Neural Networks and Deep Learning by Michael Nielsen
- Neural Networks and Deep Learning
- **3. CS231n: Convolutional Neural Networks for Visual** Recognition byStanford University
- <u>CS231n Course</u>
- 4. Deep Learning by Ian Goodfellow, Yoshua Bengio, and AaronCourville

- Deep Learning Book
- 5. MIT OpenCourseWare Introduction to Deep Learning
- <u>MIT OpenCourseWare</u>

Program	Bachelor in Computer	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits	
Career Readiness Boot Camp		2-0-0	2	
Type of Course:	SEC		I	
Pre-requisite(s), if any: Basics of Java/C++ Programming, DBMS, Data Structure				

Preface:

This comprehensive course is meticulously designed to equip students with essential skills in Data Structures, Algorithms, Object-Oriented Programming, Java, and Database Management Systems, along with essential soft skills and aptitude preparation. Through a combination of self-paced online modules, hybrid learning experiences, and offline assessments, students will gain a profound understanding of foundational and advanced concepts crucial for software development and data management. The course places a strong emphasis on practical applications, problemsolving techniques, and the development of robust, maintainable code.

In addition to the core technical skills, students will be prepared for real-world scenarios through aptitude exams, soft skills training, and mock interviews, ensuring they are well-rounded and industry-ready. A key feature of this course is the integration of free certifications from Infosys Springboard, providing students with recognized credentials that enhance their employability and align with industry standards.

To successfully complete the course, students are required to pass each individual component, contributing to the final mark out of 100. This course is an integral part of the Practical Training Module (Bootcamp training) in the curriculum, and upon successful completion, students will earn 2 credits. The rigorous evaluation process ensures that students not only acquire the necessary knowledge but also demonstrate their ability to apply these skills in professional settings.

Students must obtain specific free certifications from Infosys Springboard (<u>https://infytq.onwingspan.com/web/en/page/home</u>).

Course Outcomes (COs):

CO1: Demonstrate understanding of basic data structures (arrays, strings, linked lists) and their operations to solve simple computational problems

CO2: Apply advanced data structures (stacks, queues, trees, graphs) to develop efficient algorithms for complex problem-solving.

CO3: Design and implement software solutions using Object-Oriented Programming principles, ensuring code reusability and maintainability.

CO4: Develop robust Java applications, utilizing object-oriented features, exception handling, and file I/O operations effectively

CO5: Analyze and optimize database systems using SQL for efficient data retrieval, transaction management, and ensuring data integrity.

Module: 1	Data Structures and Algorithms - Part 1	No. of hours: 30	
		(Online, Self-Paced)	
Content Summary: Module 1 covers foundational data structures including arrays,			
strings, and linked list	s. It introduces key operations and practions	cal applications. This	
foundational knowledg	e is crucial for advancing to more comple	x data structures.	
Module: 2	Data Structures and Algorithms - Part 2	No. of hours: 30	
		(Online, Self-Paced)	
Content Summary: Mc	dule 2 focuses on advanced data structur	es such as stacks, queues,	
trees, and graphs. It covers essential operations, real-world applications, and their role in			
solving complex problems. Understanding these structures is vital for effective problem-			
solving and algorithm optimization.			
Module: 3	Object Oriented Programming	No. of hours:45	
		(Online, Self-Paced)	
Content Summary: covers the fundamental concepts of OOP, including classes, objects,			
inheritance, polymorphism, and encapsulation. It emphasizes designing and implementing			
software using these principles to enhance code reusability and maintainability.			
Module: 4	Programming using Java	No. of hours: 100	
		(Online, Self-Paced)	
		176 Dage	

Content Summary: basics of Java, including syntax, data types, operators, and control structures. It covers object-oriented principles specific to Java, such as classes, objects, inheritance, and polymorphism, along with advanced topics like exception handling and file I/O. The module aims to build strong foundational skills in Java for developing robust applications.

Module: 5	Database management Systems (part I) No. of hours: 60
	(Online, Self-Paced)

Content Summary: fundamental concepts of database systems, including database models, relational databases, and SQL. It covers key topics such as entity-relationship modeling, normalization, and basic query operations. The module provides a solid foundation in designing and managing databases, focusing on effective data retrieval and manipulation using SQL.

Module: 6	Database management Systems (part II) No. of hours: 40	
		(Online, Self-Paced)

Content Summary: advanced database concepts, including transaction management, concurrency control, and database security. This module covers complex SQL queries, stored procedures, and triggers, as well as performance optimization techniques. It focuses on enhancing your skills in managing and optimizing large-scale databases, ensuring data integrity, and implementing robust security measures.

Module: 7	Aptitude Exam	No. of hours: Online
Module: 8	Independent Evaluation through 3 rd party	No. of hours: Offline
Module: 9	Softs Skills	No. of hours: Online
Module: 10	MOCK Interview	No. of hours: Hybrid

Reference Books:

"Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

"Cracking the Coding Interview" by Gayle Laakmann McDowell

"Elements of Programming Interviews" by Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash

177 | Page

- "Head First Java" by Kathy Sierra and Bert Bates
- "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. Sudarshan
- "Introduction to the Theory of Computation" by Michael Sipser
- "Programming Challenges: The Programming Contest Training Manual" by Steven S. Skiena and Miguel A. Revilla
- "The Algorithm Design Manual" by Steven S. Skiena
- "Algorithms" by Robert Sedgewick and Kevin Wayne
- "Effective Java" by Joshua Bloch

Evaluation Criteria:

Module	Link	Hrs	Marks
Data Structures and Algorithms - Part 1	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012540969913 2620801065_shared/overview	30	10
Data Structures and Algorithms - Part 2	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012766738469 3882883448_shared/overview	30	10
Object Oriented Programming	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012540972274 9255681063_shared/overview	40	10
Programming using Java	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012880464547 618816347_shared/overview	100	10
Database management Systems (part I)	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012758066672 82022456_shared/overview	60	10
Database management Systems (Part II)	https://infytq.onwingspan.com/web/ en/app/toc/lex_auth_012767300562 9194241_shared/overview	40	78 Page

Aptitude Exam	Online Sessions to be conducted by KRMU	NA	10
AMCAT (Aspiring Minds Computer Adaptive Test)	To be organized by KRMU through External agency	NA	20
Softs Skills	Online Sessions to be conducted by KRMU	NA	10
MOCK Interview	To be organized by KRMU	NA	10
	·		100

*Please Note: No end term evaluations will be done

(DEPARTMENT ELECTIVE -I)

IMAGE PROCESSING

& COMPUTER

VISION

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Image Processing &	ENSP304	4-0-0	4
Computer Vision			
Type of Course:	e of Course: Minor (Department Elective I)		
Pre-requisite(s), if any: (1) Linear Algebra and (2) programming in python			

Course Perspective. This course introduces students to the essential concepts and techniques of image processing and computer vision. It bridges theoretical knowledge with practical applications, enabling students to understand and implement various algorithms for image enhancement, restoration, segmentation, and object recognition. The course is designed to equip students with the skills required to tackle real-world challenges in fields such as robotics, medical imaging, surveillance, and multimedia applications.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Remember key concepts, definitions, and algorithms in image processing and computer vision.
CO 2	Understand the principles and applications of essential techniques like edge detection and feature extraction.

CO 3	Apply Use image processing methods to enhance digital images and analyze the effects.	
CO 4	Evaluate the effectiveness of various computer vision models in different contexts	
CO 5	Design and implement projects that integrate multiple image processing algorithms to solve complex problems.	

Course Outline:

Distance measures.		
No. of hours: 12 1821Page		
_		

Content Summary:

Image Restoration:

- Model of the Image Degradation/Restoration Process.
- Noise Models.
- Restoration in the presence of noise using spatial filtering.
- Periodic Noise Reduction using frequency domain filtering.
- Linear Position Invariant Degradations.
- Estimation of Degradation Function.
- Inverse Filtering.
- Wiener Filtering.
- Constrained Least Square Filtering.
- Geometric Mean Filter.
- Geometric Transformations.

Color Image Processing:

- Color models and transformations.
- Image Segmentation using color.
- Texture Descriptors.
- Color Features.
- Edge/Boundary detection.
- Object Boundary and Shape Representations.
- Interest or Corner Point Detectors.
- Speeded-Up Robust Features (SURF).
- Saliency detection.

Unit Number: 3	Title: Image Compression and Segmentation	No. of hours: 10	
Content Summar	y:		
Image Compress	Image Compression:		
Data Redundancies.			
Image Compression models.			
Elements of	Information Theory.		
Lossless and	Lossy Compression.	183 L P a g e	

- Huffman Coding.
- Shanon-Fano Coding.
- Arithmetic Coding.
- Golomb Coding.
- LZW Coding.
- Run Length Coding.
- Lossless Predictive Coding.
- Bit Plane Coding.
- Image compression standards.

Image Segmentation and Morphological Image Processing:

- Discontinuity-based segmentation.
- Similarity-based segmentation.
- Edge linking and boundary detection.
- Thresholding.
- Region-based Segmentation.
- Introduction to Morphology.
- Dilation and Erosion.
- Basic Morphological Algorithms.

Unit Number: 4	Title: Object Representation and	
Omt Number: 4	Computer Vision Techniques	

Content Summary:

Representation and Description:

- Introduction to Morphology.
- Basic Morphological Algorithms.
- Representation Techniques.
- Boundary Descriptors.
- Regional Descriptors.
- Chain Code.
- Structural Methods.

Computer Vision Techniques:

Review of Computer Vision Applications.

184 | Page

No. of hours: 8

- Artificial Neural Networks for Pattern Classification.
- Convolutional Neural Networks (CNNs).
- Machine Learning Algorithms and their Applications

Learning Experiences:

- Lecture PPTs will offer clear, structured explanations to introduce and reinforce key concepts.
- Problem-based assignments will encourage deep thinking and application of theory to real-world scenarios.
- Project-based lab assignments will provide hands-on experience, making learning practical and engaging.
- Question banks will help students thoroughly review and self-assess their understanding of the entire syllabus.
- Model question papers will simulate exam conditions, helping students prepare effectively.
- Continuous assessment will track progress, providing regular feedback to guide student improvement.
- Support and feedback will be readily available, with the course instructor offering additional guidance as needed.
- Moodle LMS and interactive boards will ensure easy access to resources and foster an interactive learning environment.
- Video lectures will cover complex topics in detail, allowing students to review content at their own pace.

Textbooks

- 1. Gonzalez Rafael C. and Woods Richard E., Digital Image Processing, New Delhi: Prentice– Hall of India.
- 2. Computer Vision: Algorithms and Applications by Richard Szeliski

Online Learning References:

I) Fast.ai: Practical Deep Learning for Coders

- a. Practical course on deep learning, including applications in image processing and computer vision.
- b. Link: Fast.ai Practical Deep Learning for Coders

II) Deep Learning for Computer Vision with Python by Adrian Rosebrock

- a. A comprehensive book on deep learning techniques for computer vision applications.
- b. Link: <u>PyImageSearch Deep Learning for Computer Vision with Python</u>

III) GitHub: OpenCV Projects and Tutorials

- a. Repository of projects and tutorials on OpenCV, a popular library for computer vision.
- b. Link: <u>GitHub OpenCV</u>

IV) Towards Data Science: Image Processing Tutorials

- a. A collection of tutorials on various image processing techniques and applications.
- b. Link: Towards Data Science Image Processing

V) IEEE Xplore Digital Library: Image Processing and Computer Vision Papers

- a. Access to research papers and articles on the latest developments in image processing and computer vision.
- b. Link: <u>IEEE Xplore Digital Library</u>

IMAGE PROCESSING & COMPUTER VISION LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Image Processing & Computer	ENSP354	0-0-2	1
Vision Lab			
Type of Course:	Minor (Department Elective I)		
Pre-requisite(s), if any: (1) Linear Algebra and (2) programming in python			

Defined Course Outcomes

COs	Statements
CO 1	Apply image processing techniques using Python libraries.
CO 2	Analyze and evaluate the effectiveness of different image enhancement algorithms.
CO 3	Implement image restoration algorithms and evaluate their performance in the presence of noise.
CO 4	Develop image compression algorithms and analyze their impact on image quality.
CO 5	Formulate computer vision techniques such as object detection and tracking, gesture recognition, and facial expression recognition using Python.

Lab Experiments

S.N	Experiment	СО
1	Implement a program to acquire and display an image. Demonstrate	CO1
	the process of image sensing and acquisition, and explain the	
	components involved in an image processing system	
2	Develop a program to perform sampling and quantization on a given	CO1
	image. Visualize the effects of different sampling rates and quantization	
	levels on image quality.	
3	Implement image enhancement techniques in the spatial domain,	CO1
	including contrast stretching and histogram equalization. Compare the	
	results before and after enhancement.	
4	Apply frequency domain filtering to an image. Implement both low pass	CO1
	and high pass filters, and demonstrate their effects on the image in	
	terms of noise reduction and edge enhancement.	
5	Implement a noise model to simulate different types of noise (Gaussian,	CO2
	salt-and-pepper) in an image. Apply spatial filtering techniques to	
	restore the image from the noisy version.	
6	Develop a program to perform periodic noise reduction using frequency	CO2
	domain filtering. Implement and compare inverse filtering and Wiener	
	filtering for image restoration	
7	Implement geometric transformations on an image, such as rotation,	CO2
	scaling, and translation. Demonstrate how these transformations affect	
	the image quality and geometry.	
8	Perform color image processing by converting an image from RGB to	CO2
	another color model (e.g., HSV, YCbCr). Implement and visualize color-	
	based image segmentation techniques.	
9	Implement Huffman Coding and Run Length Coding for image	CO3
	compression. Compare the compression ratios and efficiency of these	
	techniques on different types of images.	
10	Develop a program to perform image segmentation using edge	CO3

K.R. MANGALAM UNIVERSITY

	detection techniques. Implement edge linking and boundary detection	
	algorithms to segment objects within an image.	
11	Apply morphological operations, such as dilation and erosion, on a	CO3
	binary image. Implement basic morphological algorithms to enhance the	
	structure and features of the objects in the image.	
12	Implement threshold-based and region-based segmentation techniques.	CO3
	Compare their effectiveness in segmenting different types of images	
	and objects.	
13	Implement boundary and regional descriptors to represent the shape	CO4
	and features of objects in an image. Use chain codes and structural	
	methods to describe object	
14	Develop a basic convolutional neural network (CNN) for image	CO4
	classification. Train the CNN on a dataset and evaluate its performance	
	in recognizing different classes of images.	
15	Implement a motion estimation algorithm to track moving objects in a	CO4
	video sequence. Demonstrate object tracking by visualizing the	
	trajectories of the tracked objects.	
16	Create a system for face and facial expression recognition using	CO4
	machine learning algorithms. Implement feature extraction techniques	
	and train a classifier to recognize different expressions and identities.	

INTRODUCTION TO GENERATIVE AI

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Introduction to Generative AI	ENSP306	4-0-0	4
Type of Course:	Minor (Department Elective I)		
Pre-requisite(s), if	any:		

Course Perspective. This course provides an in-depth introduction to the principles, techniques, and applications of Generative Artificial Intelligence (AI). Generative AI is a rapidly evolving field that has the potential to transform numerous industries by enabling machines to create content, predict outcomes, and enhance decision-making processes. This course will cover foundational concepts, the latest advancements in generative models, and practical applications, ensuring students gain a comprehensive understanding of the subject.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand generative AI principles, recent advancements, and applications.
CO 2	Apply probability theory and statistics in generative AI tasks.
CO 3	Design deep learning models for generative tasks
CO 4	Evaluate generative models for specific applications.

190 | Page

	Critically assess ethical implications and propose solutions for generative
CO 5	AI.

Course Outline:

Unit Number: 1	Title: Foundations of Generative AI	No. of hours: 10
Content:		
Introduction to Ge	nerative AI: Definition, working principl	es, and recent
advancements.		
Generative Modeling	ng:	
Overview of Gene	erative vs. Discriminative Models.	
Introduction to Pr	robabilistic Generative Models.	
Naive Bayes as a	basic generative model.	
Challenges in Ger	nerative Modeling.	
Introduction to Re	epresentation Learning.	
Unit Number: 2	Title: Deep Learning	No. of hours: 10
Content:		
Overview of Structur	ed and Unstructured Data.	
Introduction to Deep	Neural Networks using Keras and Tenso	rFlow.
Building and Training	g Deep Neural Networks:	
Loading, building,	, compiling, training, and evaluating mod	els.
• Techniques to improve models: Convolutional layers, Batch normalization, an		
• reconiques to in	1 , ,	
Techniques to in Dropout layers.		
_		
Dropout layers.		

Unit Number: 3	Generative Adversarial Networks	No. of hours: 10	
Content:			
□ Introduction to GA	Ns:		
Roles of the Discr	iminator and Generator.		
Training processe	s and challenges in GANs.		
□ Advanced GAN Tec	hniques:		
Wasserstein GAN	(WGAN) and WGAN-GP.		
Evaluation of GANs	5:		
Qualitative and Q	uantitative methods.		
GAN Architectures	and Applications		
Unit Number: 4	Applications and Future Directions	No. of hours: 10	
Content:			
Real-World Applica	ations of Generative AI:		
Image synthesis,	data augmentation, healthcare, gaming,	and art.	
Ethical Considerati	ons:		
Addressing bias, 1	 Addressing bias, fairness, deepfakes, and responsible AI practices. 		
Emerging Trends:	□ Emerging Trends:		
Overview of reinf	orcement learning, meta-learning, and t	ools like OpenAI's DALL-	
E.			

Learning Experiences:

- Lecture PPTs will provide clear explanations and visual aids to reinforce key concepts in Generative AI.
- Problem-based theory assignments will encourage students to apply theoretical knowledge to real-world challenges in generative modeling.
- Project-based lab assignments will offer hands-on experience in building and evaluating AI models, making learning practical and interactive.
- Question banks will help students thoroughly review the entire syllabus, ensuring a solid understanding of all topics covered.

- Model question papers will prepare students for exams by familiarizing them with the format and types of questions they may encounter.
- Continuous assessment will track student progress and provide ongoing feedback, helping to identify areas for improvement.
- Support & Feedback will be readily available, with opportunities for one-onone guidance and peer collaboration to enhance learning outcomes.

Textbooks

- 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster
- 2. Hands-On Generative Adversarial Networks with Keras: Create Powerful Neural Networks for Real-World Applications by Rafael Valle

References

- 1. Generative Deep Learning, by David Foster, 2nd Edition, O'Reilly Media, Inc.
- Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, The MIT Press
- 3. Pattern recognition and machine learning by Christopher M. Bishop

INTRODUCTION TO GENERATIVE AI LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Introduction to Generative AI Lab	ENSP356	0-0-2	1
Type of Course:	Minor (Department Elective I)		
Pre-requisite(s), if any: NA			

Defined Course Outcomes

COs	
CO 1	Design, develop, and evaluate deep neural networks for complex image classification tasks using advanced model improvement techniques.
CO 2	Implement and analyze variational autoencoders (VAEs) for anomaly detection in network traffic data, focusing on security threat identification.
CO 3	Develop and enhance generative adversarial networks (GANs) for realistic image synthesis, emphasizing model architecture and performance improvement.
CO 4	Utilize generative AI techniques for data augmentation in healthcare and other creative fields, assessing the impact on model performance and addressing ethical considerations.

Lab Experiments

S.N	Experiments	COs
1	Implement a basic probabilistic generative model using the	CO1
	Naive Bayes classifier. Train the model on a simple dataset and	
	evaluate its performance. Discuss the challenges faced during	
	the implementation and how they were addressed.	
2	Develop a representation learning model to learn and visualize	CO1
	the latent features of a given dataset. Implement the model	
	using a suitable machine learning framework and analyze the	
	results.	
3	Create a generative modeling framework to generate synthetic	CO1
	data from a given dataset. Compare the performance of	
	generative versus discriminative modeling approaches on the	
	same dataset.	
4	Implement a simple generative model to generate new data	CO1
	points from a probabilistic distribution. Discuss the working	
	principles of generative AI and recent advancements in the	
	field.	
5	Build and train a deep neural network using Keras and	CO2
	TensorFlow to classify images from the MNIST dataset.	
	Evaluate the model's performance and improve it using	
	techniques like convolutional layers, batch normalization, and	
	dropout layers.	
6	Implement an autoencoder and a variational autoencoder	CO2
	(VAE) to compress and reconstruct images from a given	
	dataset. Analyze the differences between the autoencoder and	
	VAE in terms of performance and latent space representation.	
7	Design and implement a convolutional neural network (CNN)	CO3
	to classify images from the CIFAR-10 dataset. Train the model,	
		1951Pag

195 Page

	augmentation to improve its accuracy.	
8	Implement a basic GAN to generate synthetic images. Train	CO3
	the GAN on a simple image dataset, and evaluate the quality	
	of the generated images using both qualitative and	
	quantitative methods.	
9	Develop a Wasserstein GAN (WGAN) and train it on a dataset	CO3
	of images. Compare the performance of the WGAN with a	
	standard GAN in terms of stability and quality of generated	
	images.	
10	Implement and compare different GAN architectures and loss	CO3
	functions. Train each GAN on the same dataset and evaluate	
	their performance using qualitative and quantitative methods.	
11	Implement a generative AI model for image synthesis. Train	CO4
	the model on a dataset of images and evaluate the quality of	
	the synthesized images. Discuss the potential applications of	
	image synthesis in various fields.	
12	Develop a generative AI model for data augmentation and	CO4
	data generation. Train the model on a dataset with limited	
	data and analyze how data augmentation improves the	
	performance of a classifier trained on the augmented dataset.	
13	Create a generative AI application for healthcare, such as	CO4
	generating synthetic medical images for training purposes.	
	Discuss the ethical considerations and challenges associated	
	with using generative AI in healthcare.	

TRANSFER LEARNING

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Transfer Learning	ENSP308	4-0-0	4
Type of Course:	Minor (Department Elective I)		
Pre-requisite(s), if a	ıy:		

Course Perspective. This course introduces students to the fundamental concepts and advanced techniques of transfer learning, an essential area in machine learning and deep learning. Transfer learning focuses on leveraging knowledge gained from one domain to improve learning in another domain. This course covers theoretical foundations, practical implementations, and applications across various domains, providing students with the skills necessary to apply transfer learning to real-world problems.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the theoretical foundations, motivations, and applications of transfer learning.
CO 2	Implement transfer learning algorithms proficiently using Python and deep learning libraries.
CO 3	Apply fine-tuning, feature extraction, and model adaptation techniques effectively across different domains and tasks.
CO 4	Evaluate transfer learning models using standard metrics and methodologies.

	Analyze real-world applications and ethical implications of transfer learning
CO 5	for inclusive and meaningful solutions.

Course Outline:

Unit Number: 1	Title: Foundations of Transfer Learning	No. of hours: 10
Content Summar	'y:	I
Introduction to 1	Transfer Learning:	
Overview of	AI, Machine Learning, and Transfer Learning	
Relationship	to Existing Machine Learning Paradigms	
 Fundamenta 	al Research Issues and Applications	
Instance-Based [·]	Transfer Learning:	
 Instance-Ba 	sed Noninductive Transfer Learning	
 Instance-Ba 	sed Inductive Transfer Learning	
Feature-Based T	ransfer Learning:	
Minimizing [Domain Discrepancy	
Learning Un	iversal Features	
Feature Aug	mentation	
Model-Based Tra	nsfer Learning:	
Transfer three	ough Shared Model Components	
Transfer three	ough Regularization	
Unit Number: 2	Title: Advanced Transfer Learning	No. of hours: 10
omt Number. z	Techniques	
Content Summar	y:	
Relation-Based 1	ransfer Learning:	
 Markov Logi 	c Networks (MLNs)	
Relation-Bas	sed Transfer Learning with MLNs	
Heterogeneous 1	ransfer Learning:	
Problem Def	inition and Methodologies	

	Contraction Contraction	
Applications	of Heterogeneous Transfer Learning	
Adversarial Tran	sfer Learning:	
Generative /	Adversarial Networks (GANs)	
Transfer Lea	rning with Adversarial Models	
Transfer Learnin	g in Reinforcement Learning:	
 Inter-task a 	nd Inter-domain Transfer Learning	
Unit Number: 3	Title: Multi-task and Theoretical	No. of hours: 12
	Aspects of Transfer Learning	
Content Summar	y:	
Multi-task Learn	-	
 Supervised, 	Unsupervised, and Semi-supervised Learning	
Active, Rein	forcement, and Online Learning	
 Multi-view a 	nd Distributed Multi-task Learning	
Transfer Learnin	g Theory:	
Generalizati	on Bounds for Multi-task Learning	
Generalizati	on Bounds for Supervised and Unsupervised Tra	nsfer Learning
Transitive Trans	fer Learning (TTL):	
TTL over Mix	ked Graphs	
TTL with Hic	Iden Feature Representations and Deep Neural N	letworks
AutoTL: Learning	to Transfer Automatically:	
The L2T Fra	mework	
Parameteriz	ing and Inferring What to Transfer	
Connections	to Other Learning Paradigms	
Unit Number: 4	Title: Applications of Transfer Learning	No. of hours: 8
Content Summar	y:	<u> </u>
Specialized Lear	ning Techniques:	
• Few-Shot, Z	ero-Shot, and One-Shot Learning	
Bayesian Pro	ogram Learning and Poor Resource Learning	
		100 D a g a

Transfer Learning Applications:

- Computer Vision and Medical Image Analysis
- Natural Language Processing and Sentiment Analysis
- Dialogue Systems and Spoken Language Understanding
- Natural Language Generation

Learning Experiences:

- Lecture PPTs will deliver foundational knowledge on transfer learning, providing clear explanations of key concepts and advanced techniques.
- Problem-based theory assignments will engage students in applying transfer learning concepts to solve real-world problems, enhancing critical thinking.
- Project-based lab assignments will offer hands-on experience with implementing transfer learning models, making learning practical and relevant.
- Question banks will help students review the entire syllabus, reinforcing their understanding of both foundational and advanced transfer learning topics.
- Model question papers will prepare students for exams by familiarizing them with typical question formats and challenges.
- Continuous assessment will provide regular feedback on student progress, helping them identify strengths and areas for improvement.
- Support & Feedback will be available through the course instructor, encouraging collaboration and peer reviews to deepen understanding and improve performance.

Textbook

 "Transfer Learning" by Qiang Yang, Yu Zhang, Wenyuan Dai, Sinno Jialin Pan

Reference Books:

- 1. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 2. "Transfer Learning in Action" by Yuxi (Hayden) Liu
- 3. "Transfer Learning for Natural Language Processing" by Paul Azunre
- 4. "Deep Learning for Computer Vision" by Rajalingappaa Shanmugamani
- 5. "Hands-On Transfer Learning with Python" by Dipanjan Sarkar and Raghav Bali

Additional Readings:

- I) **Open Source Projects:**
 - a. TensorFlow Hub: <u>GitHub Repository</u>
 - b. PyTorch Hub: GitHub Repository

II) Community Forums and Discussions:

- a. Reddit: r/MachineLearning
- b. Stack Overflow: <u>Transfer Learning Tag</u>

III) OSSU Link:

Open Source Society University - Data Science Curriculum

TRANSFER LEARNING LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Transfer Learning	ENSP358	0-0-2	1
Lab			
Type of Course:	Minor (Department Elective I)		
Pre-requisite(s), if a	iny: NA		

Defined Course Outcomes

COs	Statement
CO 1	Apply and evaluate basic transfer learning models and techniques to solve
	image and text classification tasks using pre-trained models.
	Implement and analyze advanced transfer learning techniques, including
CO 2	relation-based, adversarial, and heterogeneous transfer learning, to
	improve model performance across different domains.
	Develop and assess multi-task learning models and theoretical aspects of
CO 3	transfer learning, focusing on improving model generalization and
	performance in multi-domain tasks.
	Utilize transfer learning for practical applications, including few-shot
CO 4	learning, zero-shot learning, sentiment analysis, and privacy-preserving
	techniques, to address real-world problems effectively.

Lab Experiments

S.N	Experiment	CO
1	Implement an instance-based transfer learning model using a	C01
	simple dataset to demonstrate the concepts of noninductive and	
	inductive transfer learning.	
2	Develop a feature-based transfer learning model to minimize	C01
	domain discrepancy and learn universal features. Use a dataset with	
	different domains to showcase the effectiveness of feature	
	augmentation.	
3	Create a model-based transfer learning application by sharing	CO1
	model components and applying regularization techniques. Evaluate	
	the performance of the model on a target task with limited data.	
4	Compare the performance of a naive machine learning model with a	CO1
	transfer learning model on the same dataset. Discuss the	
	advantages and challenges of transfer learning in this context.	
5	Implement a relation-based transfer learning model using Markov	CO2
	Logic Networks (MLNs). Apply the model to a dataset with relational	
	data and evaluate its performance.	
6	Develop a heterogeneous transfer learning application that	CO2
	addresses the challenges of transferring knowledge between	
	different feature spaces or distributions. Demonstrate the	
	application on a real-world dataset.	
7	Create an adversarial transfer learning model using GANs. Train the	CO2
	model on a source domain and evaluate its ability to generate or	
	classify data in a target domain.	
8	Implement transfer learning in a reinforcement learning context by	CO2
	transferring knowledge from one task to another. Compare the	
	performance of the transfer learning model with a model trained	
	from scratch.	
9	Develop a multi-task learning model that simultaneously trains on	CO3

	multiple tasks. Evaluate the performance improvements achieved	
	through shared learning compared to individual task training.	
10	Create a transitive transfer learning model using mixed graphs and	CO3
	hidden feature representations. Apply the model to a dataset with	
	multiple related tasks and analyze the results.	
11	Implement transfer learning models for various applications, such	CO4
	as computer vision, medical image analysis, and natural language	
	processing. Compare the effectiveness of transfer learning across	
	these different domains	

(DEPARTMENT ELECTIVE-II)

COMPUTATIONAL SERVICES IN

THE CLOUD

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Computational	Course Code	L-T-P	Credits
Services in The Cloud	ENSP401	4-0-0	4
Type of Course:	Minor (Department Elective II)		
Pre-requisite(s), if any:			

Course Perspective. This course introduces students to the fundamental concepts and applications of cloud computing, exploring the paradigm shift towards cloud-based IT resources and services. It covers various cloud service models (IaaS, PaaS, SaaS), deployment models (public, private, hybrid, community), and key characteristics and challenges of cloud computing. Students will learn about virtualization, microservices, cloud storage, serverless computing, and resource management fundamentals. Additionally, the course includes case studies on cloud market analysis, security, compliance, big data handling, and a comparative study of public clouds. By the end of the course, students will be equipped to understand, implement, and analyze cloud computing technologies and solutions.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs Sta	tements
---------	---------

K.R. MANGALAM UNIVERSITY

CO 1	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
CO 2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and cost.
CO 3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.
CO 4	Analyze various cloud programming models and apply them to solve problems on the cloud.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Foundations Computing	of Cloud	No. of hours: 10
Content:			
Introduction	to Cloud Computing:		
• Definiti	ons and basic concepts		
Cloud of	lelivery models (IaaS, Paa	aS, SaaS)	
Cloud of	Cloud deployment models (Public, Private, Hybrid)		
Benefits and challenges of cloud computing			
Cloud Infras	tructure and Architectu	ure:	
Cloud of	computing services and in	ter-cloud inter	operability
Virtualization and its importance			
Security and	Ethical Issues:		
 Securit 	y and privacy concerns		
			207 L D = = =

- Ethical	issues in cloud computing				
• Ethical	Ethical issues in cloud computing				
Unit	Title: Advanced Cloud Co	omputing No. of hours: 12			
Number: 2	and Virtualization				
Content:		k			
Virtualizatio	n Technologies:				
 Virtual 	machine monitors				
Full virt	tualization and paravirtualizati	ion			
 Virtuali 	zation technology (hardware-l	based and OS-based)			
Resource Ma	anagement and Scheduling	:			
 Cloud r 	esource management				
 Schedu 	lling algorithms and dynamic a	application scaling			
 Optimiz 	zation of network virtualizatior	n			
Virtualizatio	n Security:				
 Virtuali 	zation security risks				
Unit	Title: Cloud Security,	Privacy, No. of hours: 10			
Number: 3	and Compliance				
Content:		k			
Cloud Secur	ity Basics:				
Cloud s	security risks and challenges				
 Securit 	y mechanisms (encryption, ha	ashing, digital signatures)			
 Identity 	y and access management				
Advanced Se	ecurity Measures:				
• Trusted	l virtual machine monitors				
 Cloud s 	security policies and controls				
 Cloud s 	 Cloud security threats (traffic eavesdropping, denial of service) 				
Compliance	and Legal Issues:				
Multi-regional compliance					
 Privacy 	Privacy impact assessment				
Case studies on cloud security					
Unit	Title: Applications of	f Cloud No. of hours: 8			
Number: 4	Computing and Future Tre				
	I	200 L D a g o			

Content:

Cloud Applications:

- Scientific research and high-performance computing
- Social computing and digital content
- Big data and cloud-based AI/ML applications

Emerging Trends:

- Edge computing and fog computing
- Future challenges and opportunities
- Energy use and ecological impact of data centers

Learning Experiences:

- Lecture PPTs will provide structured insights into core cloud computing concepts, covering foundational to advanced topics.
- Problem-based theory assignments will challenge students to apply cloud computing models and virtualization techniques to real-world scenarios.
- Project-based lab assignments will offer hands-on experience in implementing cloud infrastructure, resource management, and security measures.
- Question banks will help students thoroughly review key concepts, reinforcing their understanding of cloud computing and security.
- Model question papers will simulate exam scenarios, helping students prepare effectively for assessments.
- Continuous assessment will provide regular feedback, ensuring students stay on track and can improve based on ongoing evaluations.
- Support & Feedback will be readily available, with opportunities for collaboration and peer review to enhance learning and practical application of cloud technologies.

Textbooks:

- 1. Cloud Computing: Concepts, Technology & Architecture by Thomas
- 2. "Cloud Computing: Theory and Practice" by Dan C. Marinescu

3. "Cloud Computing: Concepts, Technology & Architecture" by Thomas Erl, Zaigham Mahmood, and Ricardo Puttini

References

- 1. Lizhe Wang, Rajiv Ranjan, Jinjun Chen and Boualem Benatallah, Cloud Computing (1 ed.), CRC Press, 2017. ISBN 978-1351833097.
- Judith S. Hurwitz and Daniel Kirsch, Cloud Computing For Dummies (2 ed.), Hoboken: John Wiley & Sons, 2020. ISBN 978-1119546658.

COMPUTATIONAL SERVICES IN

THE CLOUD LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Computational	Course Code	L-T-P	Credits
Services in The Cloud Lab	ENSP451	0-0-2	1
Type of Course:	Minor (Department Elective II)		
Pre-requisite(s), if any: Nil			

Defined Course Outcomes

COs	Statement
	Implement advanced resource management and scheduling systems in
CO 1	cloud environments to optimize the efficiency and performance of
	virtualized resources.
	Develop comprehensive security and compliance frameworks for cloud
CO 2	infrastructures, addressing various security threats and ensuring
	regulatory compliance.
	Enhance data privacy and compliance strategies for multi-regional cloud
CO 3	deployments, ensuring adherence to global and regional data protection
	regulations.
	Leverage cloud computing resources for high-performance scientific
CO 4	research, enabling scalable and efficient data processing, storage, and
	analysis.

List of Programs

S.N	Project Detail	COs
1	Set up a virtual machine (VM) on a cloud platform (e.g., AWS,	CO1
	Azure, Google Cloud). Explore different VM configurations and	
	understand the basics of IaaS.	
2	Deploy a simple web application using a PaaS provider (e.g.,	CO1
	Heroku, Google App Engine). Demonstrate the deployment process	
	and manage application scaling	
3	Implement a cloud storage solution using a SaaS provider (e.g.,	CO1
	Dropbox, Google Drive). Upload, share, and manage files to	
	understand cloud storage benefits and challenges.	
4	Investigate the security and privacy settings of a cloud service	CO1
	provider. Configure security groups and access controls to secure	
	your cloud resources.	
5	Install and configure a virtual machine monitor (VMM) like VMware	CO2
	or VirtualBox. Compare full virtualization and paravirtualization	
	techniques.	
6	Install and configure a virtual machine monitor (VMM) like VMware	CO2
	or VirtualBox. Compare full virtualization and paravirtualization	
	techniques.	
7	Optimize network virtualization by setting up and managing virtual	CO2
	networks in a cloud environment. Analyze the performance	
	benefits of network virtualization.	
8	Implement encryption and hashing mechanisms to secure data	CO3
	stored in the cloud. Demonstrate how these mechanisms protect	
	data integrity and confidentiality.	
9	Set up identity and access management (IAM) in a cloud	CO3
	environment. Configure single sign-on (SSO) for multiple cloud	
	services to streamline user access.	
10	Develop a cloud-based AI application using a cloud provider's	CO4
	machine learning services (e.g., AWS SageMaker, Google AI	

	Platform). Train and deploy a machine learning model in the cloud.	
11	Implement a cloud-based big data solution using Hadoop or Spark	CO4
	on a cloud platform. Process and analyze a large dataset to	
	understand the benefits of cloud-based big data processing.	
12	Explore edge computing by deploying a cloud application that	CO4
	interacts with IoT devices. Demonstrate how edge computing can	
	reduce latency and improve performance.	

MICROSOFT AZURE CLOUD

FUNDAMENTALS

Program Name:	Bachelor in Computer Applications (BCA)					
Course Name: Microsoft	Course Code	L-T-P	Credits			
Azure Cloud Fundamentals	ENSP403	4-0-0	4			
Type of Course:	Minor (Department Elective II)					
Pre-requisite(s), if any:	1					

Course Perspective. This course introduces students to the fundamental concepts of cloud computing with a focus on Microsoft Azure. It aims to bridge the gap between theoretical cloud principles and practical Azure applications, emphasizing the relevance of cloud services in modern engineering and technology. Students will explore core topics such as cloud computing models, Azure architecture, compute and networking services, storage services, and cost management. The course is divided into four modules:

- 1. Introduction to Cloud Computing and Azure Fundamentals
- 2. Introduction to Microsoft Azure
- 3. Azure Storage Services and Identity Management
- 4. Azure Cost Management, Governance, and Monitoring

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	s Statements							
CO 1	Identify the core concepts of cloud computing and Microsoft Azure, including deployment models and service models.							
CO 2	Understand the benefits of cloud services, such as high availability,							

	scalability, and security.
CO 3	Understand Azure architecture components and compute/networking services, analyzing their functionality and use cases.
CO 4	Determine the appropriate Azure storage services for different performance requirements and analyze identity management and security features for access control.
CO 5	Critique cost management strategies in Azure, analyze governance and compliance tools, and determine effective methods for managing and deploying Azure resources.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Comput	Introduc ing and Az		to undam	Cloud entals	No. of	hours:	10	
Content Summary:	Content Summary:								
Cloud Computing B	Cloud Computing Basics: What is cloud computing, Delivery models, deployment								
models, defining attributes, resources, and organization of the infrastructure.									
Network-Centric Com	Network-Centric Computing and Network-Centric Content. Cloud computing delivery								
models and services,	models and services, Applications of cloud, Ethical Issues in Cloud Computing, Major								
Challenges Faced by C	loud Con	nputing							
Unit Number: 2	Title In	troduction	to Mi	crosoft	Azure	No. of	hours:	12	
Content Summary:									
Azure Architecture Components: Azure regions, availability zones, datacenters,									
Azure resources, resource groups, subscriptions, Management groups hierarchy,									
Azure Compute and Networking Services: Compute types comparison: Container									
instances, VMs, Functions, Virtual machine options: VMs, VM Scale Sets, availability									

sets, Azure Virtual Desktop, Application hosting options, Virtual networking: Azure Virtual Networks, subnets, peering, DNS, VPN Gateway, ExpressRoute, Public and private endpoints

Jnit Number: 3	Title:	Azure	Storage	Services	and No. of hours	10
	Identi	ty Mana	agement			. 10

Content Summary:

Azure Storage Services: Create and manage virtual machines using Azure. Different VM sizes and types based on performance requirements. VM scaling and load balancing for optimizing application performance. Azure storage services: Blob Storage, Table Storage, File Storage, and Disk Storage.

Unit Number: 4	Title:	Azure	Cost	Management,	No. of hours: 8
omt Number. 4	Govern	ance, an			

Content Summary:

Cost Management in Azure: Factors affecting costs, Pricing and TCO calculators, Azure Cost Management and Billing tool, Tagging usage.

Governance and Compliance: Azure Blueprints, Azure Policy, Resource locks, Service Trust Portal

Monitoring Tools in Azure: Azure Advisor, Azure Service Health, Azure Monitor: Log Analytics, alerts, Application Insights

Learning Experiences:

- Lecture PPTs will provide a clear introduction to cloud computing and Microsoft Azure fundamentals, covering both theory and practical applications.
- Problem-based theory assignments will engage students in applying Azure architecture concepts, compute services, and networking solutions to real-world scenarios.
- Project-based lab assignments will offer hands-on experience in managing Azure resources, including setting up virtual machines, storage solutions, and identity management.
- Question banks will help students thoroughly review key Azure concepts, ensuring a deep understanding of cloud services and their applications.

- Model question papers will simulate exam conditions, helping students effectively prepare for assessments on Azure fundamentals.
- Continuous assessment will provide ongoing feedback, allowing students to track their progress and improve their understanding of Azure cost management, governance, and monitoring.
- Support & Feedback will be readily available, with opportunities for collaboration and peer review to deepen learning and practical application of Microsoft Azure technologies.

Text Book:

- a) "Cloud Computing: Theory and Practice" by Dan C. Marinescu
- b) "Exam Ref AZ-900 Microsoft Azure Fundamentals" by Jim Cheshire.

References

- a) "Exam Ref AZ-900 Microsoft Azure Fundamentals" by Jim Cheshire.
- b) "Microsoft Azure Essentials: Fundamentals of Azure" by Michael Collier and Robin Shahan.
- c) "Azure for Architects: Implementing cloud design, DevOps, IoT, and serverless solutions on your public cloud" by Ritesh Modi.
- d) "Azure Security Center: Protecting your cloud workloads" by Yuri Diogenes, Tom Shinder, and Debra Shinder.
- e) "Azure Cost Management and Billing" by Sjoukje Zaal

Additional Readings:

Online Learning Resources:

I) Microsoft Learn:

Microsoft's official learning platform offers a wide range of Azure courses, modules, and learning paths for beginners to advanced users. Explore topics such as cloud computing basics, Azure architecture components, compute and networking services, storage services, identity management, cost management, governance, and monitoring. <u>Microsoft Learn</u>

R 1. Coursera:

Coursera provides Azure courses offered by top universities and organizations. Topics include cloud computing basics, Azure architecture, services, security, governance, and more. <u>Coursera Azure Courses</u>

2. Open-Source Society University (OSSU):

OSSU offers a structured, open-source curriculum for self-learning various topics, including cloud computing and Azure fundamentals. You can follow their curriculum to gain a comprehensive understanding of Azure concepts and services. <u>OSSU</u> <u>Cloud Computing Curriculum</u>

MICROSOFT AZURE CLOUD

FUNDAMENTALS LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Microsoft Azure	Course Code L-T-P		Credits
Cloud Fundamentals Lab	ENSP453	0-0-2	1
Type of Course:	Minor (Department Elective II)		
Pre-requisite(s), if any: Nil			

Lab Experiments

Defined Course Outcomes

COs	Statement
	Deploy and manage scalable web applications using Azure architecture
CO 1	components, ensuring high availability, fault tolerance, and optimal
	performance.
	Develop and optimize Azure storage solutions for data-intensive
CO 2	applications, focusing on efficient data storage, retrieval, and
	performance.
	Establish secure and compliant environments in Azure, ensuring
CO 3	governance, cost management, and continuous monitoring for mission-
	critical applications.
	Migrate on-premise applications to Azure, ensuring minimal downtime
CO 4	and optimized performance through effective planning, resource
	management, and monitoring.

S.N	Project Detail	COs
	Set up a cloud environment using a chosen cloud provider (e.g., AWS,	CO1
	Azure, Google Cloud). Explore and document the different delivery	
	models (IaaS, PaaS, SaaS) and deployment models (Public, Private,	,
1	Hybrid).	
	Implement a network-centric application using cloud services	CO1
	Demonstrate how network-centric content can be delivered and	
2	managed in a cloud environment.	
	Explore a cloud-based application (e.g., Google Docs, Office 365).	CO1
	Analyze its benefits and the ethical issues it presents in terms of data	
3	privacy and security.	
	Explore Azure regions, availability zones, and datacenters. Create and	CO2
	manage Azure resources and resource groups, and understand the	
	subscription and management groups hierarchy.	
	Compare different Azure compute types (Container instances, VMs,	
	Functions). Create and manage VMs, VM Scale Sets, and availability	,
	sets. Explore Azure Virtual Desktop and application hosting options.	
	Set up a virtual network in Azure. Configure subnets, peering, DNS,	
	VPN Gateway, and ExpressRoute. Explore the use of public and private	
	endpoints in Azure networking.	
	Host a web application on Azure using different hosting options.	CO2
	Compare the performance and cost implications of using VMs, Azure	
	App Service, and Azure Functions.	
	Create and manage virtual machines in Azure. Explore different VM	CO3
	sizes and types based on performance requirements. Implement VM	
	scaling and load balancing to optimize application performance.	
	Set up Azure Blob Storage and upload/download data. Explore Table	
	Storage and File Storage services. Implement Disk Storage and	
	understand its use cases.	
	Use the Azure Pricing Calculator and TCO Calculator to estimate the	CO4

COS	sts of running a sample application on Azure. Explore the Azure Cost	
Ма	nagement and Billing tool to monitor and control costs.	
Set	up monitoring for an Azure application using Azure Monitor.	CO4
Сог	nfigure Log Analytics, set up alerts, and use Application Insights to	
mo	nitor application performance and health	
Use	e Azure Advisor and Azure Service Health to optimize and maintain	CO4
the	health of Azure resources. Implement recommendations provided	
by	Azure Advisor and monitor service issues using Azure Service	
Hea	alth.	

STORAGE AND DATABASES ON

CLOUD

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Storages and Databases on Cloud	ENSP405	4-0-0	4
Type of Course:	Minor (Department Elective II)		
Pre-requisite(s), if any:			

Course Perspective. The course covers the basics of cloud computing and introduces various cloud storage and database types. It discusses migration techniques, security, and performance considerations for cloud databases. The AWS cloud storage unit focuses on Amazon S3, EC2 Instance Storage, and more. It also help student analyzing case studies of companies like Netflix and Spotify using cloud storage and databases.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand cloud storage and database fundamentals, including security best practices.
CO 2	Apply indexing, caching, and query optimization for performance in cloud storage and databases.
CO 3	Analyze requirements to select suitable cloud storage and database solutions.
CO 4	Differentiate between types of cloud storage and database services.

	Articulate best practices for designing scalable, reliable, and secure cloud	
	CO 5	storage and databases.

Course Outline:

Unit Number:1	Title: Introduction to Storage	
	on cloud	No. of hours: 8

Content:

Introduction to Cloud Computing, Overview of cloud databases and cloud storages, types of cloud storages (Object, block and file), different types of cloud database management systems, Gartner Magic Quadrant for Cloud Database Management Systems, Advantages of Working with Cloud Databases, Considerations for Cloud Databases, Top Cloud Database, Factors that help in choosing the right cloud database, Challenges involved in using cloud storages and databases.

	Title: Data Integration,	
Unit Number:2	Migration, Security and	No. of hours: 10
	performance on cloud NET	
	FrameworkFundamentals	

Content:

Techniques, tools, methods, and considerations for migrating from on-premise databases to cloud databases; backup, recovery, and disaster planning, including automated backups, point-in-time recovery, and replication; performance optimization and monitoring, including query optimization, indexing, caching, and monitoring tools; scalability and high availability, including load balancing, replication, sharding, and auto-scaling; cloud data warehousing.

Unit Number:3	Title: Cloud-Hosted Data Storage Systems	No. of hours: 10
Content:	1	L
Introduction,		
Introduction to A	AWS cloud storage, AWS management co	onsole, AWS Storage
Services, Uploadii	ng files and images, Creating a web server,	Overview of Amazon 223 Page

S3, Storage Classes, EC2 Instance Storage, network file system Amazon Elastic Block Store, Amazon Elastic file system, Amazon Cloud Front. Brief introduction to Google Cloud Storage, and Azure Blob Storage.

Unit Number:4	Title:	Case Study		
			No. of hours: 1	12

Content:

Case Studies and Real-world Examples of Netflix , Airbnb, Pinterest, spotify, cocacola etc. Analyzing real-world use cases of organizations using cloud storage and databases, discussing architecture decisions, challenges, and lessons learned.

Learning Experiences:

- Lecture PPTs will introduce fundamental concepts of cloud storage and databases, providing a strong theoretical foundation.
- Problem-based theory assignments will engage students in solving real-world challenges related to cloud storage types, migration, and security.
- Project-based lab assignments will offer hands-on experience with AWS storage services, enabling students to manage and optimize cloud-hosted data systems.
- Question banks will reinforce key concepts, helping students thoroughly prepare for exams and understand cloud storage and database best practices.
- Model question papers will simulate assessment conditions, helping students anticipate the types of questions and scenarios they may face in exams.
- Continuous assessment will provide regular feedback on student progress, allowing for timely improvements in understanding and application of cloud storage and database concepts.
- Support & Feedback will be available throughout the course, with opportunities for collaboration and peer learning, particularly during the analysis of real-world case studies like Netflix and Spotify.

References

- 1. Cloud Computing: Concepts, Technology & Architecture by Thomas Erl, Ricardo Puttini, and Zaigham Mahmood
- 2. Designing Data-Intensive Applications by Martin Kleppmann
- 3. Cloud Architecture Patterns: Using Microsoft Azure" by Bill Wilder

Additional Readings:

Online Learning Resources for Storage and Databases on Cloud

I) Microsoft Learn: Introduction to Azure Storage

- a. **Description:** Comprehensive learning path covering Azure Storage services, including Blob, File, and Disk Storage.
- b. Link: Microsoft Learn Introduction to Azure Storage

II) AWS Training and Certification: Storage Learning Path

- a. **Description:** AWS offers a detailed learning path for storage services, including Amazon S3, EBS, and more.
- b. Link: AWS Training Storage Learning Path

III) Google Cloud Training: Storage and Databases

- a. **Description:** Google Cloud offers courses on Cloud Storage, SQL, and NoSQL database services.
- b. Link: Google Cloud Training Storage and Databases

STORAGE AND DATABASES ON

CLOUD LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Storages and Databases on Cloud Lab	ENSP455	0-0-2	1
Type of Course:	Minor (Department Elective II)		
Pre-requisite(s), if any: Nil			

Defined Course Outcomes

COs	Statements	
CO 1	Implement database migration, backup, recovery, and performance optimization strategies for transitioning on-premise databases to AWS cloud.	
CO 2	Develop cloud storage solutions for large-scale file management and optimize performance using AWS storage services and content delivery networks.	
CO 3	Design and manage cloud data warehousing solutions, including ETL processes, performance monitoring, and scalability configurations.	
CO 4	Analyze and apply best practices from real-world cloud storage use cases to enhance the scalability, reliability, and performance of cloud-based applications.	

Lab Experiments

Project	Project Detail	Mapped
No.		CO/COs
1	Explore different types of cloud storages (Object, Block, File).	CO1
	Set up and compare examples of each type using a cloud	
	provider (e.g., AWS S3 for object storage, EBS for block	
	storage, EFS for file storage).	
2	Research and analyze the Gartner Magic Quadrant for Cloud	CO1
	Database Management Systems. Create a report summarizing	
	the top cloud database providers and their key features.	
3	Implement a migration process from an on-premise database	CO2
	to a cloud database using a migration tool (e.g., AWS Database	
	Migration Service, Google Cloud Database Migration Service).	
	Document the steps and considerations involved.	
4	Develop a cloud storage solution for a media sharing platform	CO2
	using AWS storage services to handle large-scale file uploads	
	and downloads.	
5	Configure Amazon CloudFront for content delivery. Upload and	CO3
	distribute content using CloudFront and analyze the	
	performance benefits. Briefly explore and set up storage using	
	Google Cloud Storage and Azure Blob Storage.	
6	Create a cloud data warehouse for an e-commerce company to	CO3
	store and analyze sales data using AWS Redshift.	
7	Develop a cloud storage and content delivery network (CDN)	CO4
	solution for a video streaming service to ensure	
8	Conduct a comprehensive analysis of how major companies	CO4
	like Netflix, Airbnb, and Spotify use cloud storage and	
	databases to enhance their operations.	
	I	

APPLICATION DEVELOPMENT

AND DEVOPS ON CLOUD

Program Name:	Bachelor in Co (BCA)	mputer	Applications
Course Name:	Course Code	L-T-P	Credits
APPLICATION DEVELOPMENT	ENSP407	4-0-0	4
AND DEVOPS ON CLOUD			
Type of Course:	Minor (Department	Elective I	I)
Pre-requisite(s), if any: Nil			

Course Perspective. The syllabus aims to equip students with practical skills and theoretical knowledge to design, develop, and deploy applications in cloud environments while implementing DevOps practices to enhance software development, delivery, and operations on the cloud. It prepares them for a career in the dynamic and rapidly growing field of cloud computing and DevOps, where demand for skilled professionals is high due to the increasing adoption of cloud technologies in various industries.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the fundamental concepts of cloud computing and the various service and deployment models.
CO 2	Develop cloud-native applications using containerization and microservices architecture.
CO 3	Implement DevOps practices in cloud environments, including CI/CD pipelines and Infrastructure as Code.

CO 4	Utilize cloud-based DevOps tools for version control, collaboration, testing and performance optimization.	
CO 5	Analyze best practices for application security, cost management, and high availability in the cloud.	

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: The problem of Delivering Software	No. of hours: 10
Content Summar	y:	
Introduction to D	evOps: Principles, Practices, Commo	n Release antipatterns,
benefits.		
Configuration Mar	nagement: using version control,	managing dependencies,
managing software	configuration, managing tools	
Unit Number: 2	Title: Continuous Integration and	No. of hours: 10
	Testing Strategy	
Content Summar	y:	
Introduction to o	contigous integration. Implementing	contiguous integration,
Essential practices,	distributed version control system.	
Testing Strategy:	Introduction of testing, Types of tes	ts, real-life situation and
strategies, and ma	naging defect backlogs	
Unit Number: 3	Title: The deployment Pipeline	No. of hours: 10
Content Summar	y:	
Anatomy of the	Deployment Pipeline: Introduction	of deployment pipeline,
deployment pipeline practices, the automated acceptance test gate, test strategy,		
prepare to release, implement a deployment pipeline. Build and deployment		
scripting, the commit stage: principles and practices, Automated Acceptance		

testing, Testing Non functional Requirements, deploying and releasing application.

Unit Number: 4 Title: The delivering Ecosystem No. of hours: 10

Content Summary:

Managing infrastructure and Environments: understanding the needs of the operation team . Managing server provisioning and configuration, managing the configuration of middleware, managing infrastructure services, virtualization, cloud architecture, monitoring infrastructure and application,

managing data: Database scripting, data management and deployment pipeline. Managing components and dependencies: Introduction, keeping your application

releasable, dependencies, components, managing dependency graph.

Managing Continuous delivery: introduction, maturity model, project lifecycle, risk management process.

Learning Experiences:

- Lecture PPTs will introduce key DevOps concepts and cloud application development, providing a comprehensive theoretical foundation.
- Problem-based theory assignments will challenge students to apply DevOps principles, such as continuous integration and configuration management, to real-world scenarios.
- Project-based lab assignments will offer hands-on experience in building and deploying cloud-native applications using microservices and CI/CD pipelines.
- Question banks will reinforce essential concepts, helping students thoroughly prepare for exams and grasp the complexities of DevOps practices in cloud environments.
- Model question papers will simulate assessment conditions, allowing students to practice and prepare effectively for exams on DevOps and cloud application development.
- Continuous assessment will provide regular feedback on student progress, ensuring they stay on track and can improve their understanding and skills in

DevOps practices.

 Support & Feedback will be available through the course instructor, encouraging collaboration and peer review, particularly in managing deployment pipelines and the delivery ecosystem.

Text books:

 Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Pearson Education, Inc., 2011.

References

- Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Pearson Education, Inc., 2011.
- Thomas Erl, Ricardo Puttini, and Zaigham Mahmood, Cloud Computing: Concepts, Technology & Architecture, Prentice Hall, 2013.
- Arun Eapen, Docker on Amazon Web Services: Build, deploy, and manage your container applications at scale on AWS, Packt Publishing, 2017.
- Sam Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, Inc., 2015.
- Mark Richards and Neal Ford, Fundamentals of Software Architecture: An Engineering Approach, O'Reilly Media, Inc., 2020.

Additional Readings:

Online Learning Resources for Application Development and DevOps on Cloud

- I) Microsoft Learn: Azure DevOps and Development
 - a. **Description:** Comprehensive learning paths and modules on Azure DevOps, including CI/CD, IaC, and cloud-based application development.

b. Link: Microsoft Learn - Azure DevOps and Development

II) AWS Training and Certification: DevOps on AWS

- a. Description: Detailed courses and certifications for learning DevOps practices and application development on AWS, covering tools like AWS CodePipeline, CodeBuild, and more.
- b. Link: <u>AWS Training DevOps on AWS</u>

III) Google Cloud Training: Application Development

- a. **Description:** Google Cloud provides courses on developing applications using Google Cloud services, including Kubernetes, App Engine, and Cloud Functions.
- b. Link: <u>Google Cloud Training Application Development</u>

APPLICATION DEVELOPMENT

AND DEVOPS ON CLOUD LAB

Program Name:	Bachelor in Compute	r Applicati	ons (BCA)
Course Name: APPLICATION DEVELOPMENT	Course Code	L-T-P	Credits
AND DEVOPS ON CLOUD LAB	ENSP457	0-0-2	1
Type of Course:	Minor (Department Elec	tive II)	
Pre-requisite(s), if any: Nil	1		

Lab Experiments

Defined Course Outcomes

COs	Course Outcomes (COs)	
CO 1	Implement continuous integration (CI) pipelines to automate the build, test, and integration processes, ensuring smooth and efficient integration of new code changes.	
CO 2	Develop and implement automated deployment pipelines for microservices and mobile applications, ensuring reliable and efficient deployment processes.	
СО 3	Integrate comprehensive testing strategies, including acceptance and non-functional requirements testing, into CI/CD pipelines to ensure high code quality and performance standards.	
CO 4	Manage and monitor cloud-based application infrastructure using automation tools, ensuring efficient provisioning, configuration, and continuous monitoring.	

S.N	Experiment	COs
1	Set up a version control system (e.g., Git) for a sample software	C01
	project. Demonstrate how to manage code versions, branches, and	
	merges.	
2	Implement configuration management using a tool such as Ansible or	C01
	Chef. Create scripts to manage software configurations and	
	dependencies for a sample application.	
3	Explore common release antipatterns in software delivery. Analyze a	C01
	real-world case study and propose solutions to mitigate these	
	antipatterns using DevOps principles.	
4	Implement continuous integration for a sample project using a CI tool	CO2
	(e.g., Jenkins, Travis CI). Configure the tool to automatically build	
	and test the project whenever code changes are committed.	
5	Set up a distributed version control system (e.g., Git) for a	CO2
	collaborative project. Demonstrate branching, merging, and	
	managing code changes in a distributed environment.	
6	Implement a deployment pipeline for a sample application. Automate	CO3
	the build, test, and deployment stages using a CI/CD tool like Jenkins	
	or GitLab CI.	
7	Write and execute build and deployment scripts for a sample project.	CO3
	Use scripting languages like Bash or PowerShell to automate the	
	process.	
8	Set up and configure infrastructure for a sample application using	CO4
	Infrastructure as Code (IaC) tools like Terraform or CloudFormation.	
	Demonstrate server provisioning, middleware configuration, and	
	monitoring.	
9	Implement continuous delivery for a sample project. Develop a	CO4
	maturity model, define the project lifecycle, and establish a risk	
	management process to ensure smooth delivery and deployment.	

(DEPARTMENT ELECTIVE-III)

MOBILE APPLICATION

DEVELOPMENT USING IOS

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Mobile Application	Course Code	L-T-P	Credit s
Development using iOS	ENSP409	4-0-0	4
Type of Course:	Minor (Department Elective III))	
Pre-requisite(s), if any: Basics of Android			

Course Perspective. The objective of the course is to provide skills to develop applications for OS X and iOS. It includes an introduction to the development framework Xcode. Objective-C is used as a programming language to develop applications. Objective-C is the superset of the C programming language and provides object-oriented capabilities and a dynamic runtime. Objective-C inherits the syntax, primitive types, and flow control statements of C and adds syntax for defining classes and methods. The course is divided into 4 modules:

- 1. Introduction to IDE and SDK of iOS App Development
- 2. Swift Programming
- 3. Encapsulating Data
- 4. Developing iOS Applications

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the fundamental concepts of variables, constants, and basic data types in SWIFT.

CO 2	Analyze the use of control flow statements such as for, if, and switch in various programming scenarios.
CO 3	Apply object-oriented concepts in SWIFT, including the use of classes, structures, and protocols.
CO 4	Create functions, closures, and extensions to enhance code modularity and reuse.
CO5	Evaluate error handling techniques and type checking mechanisms to develop robust SWIFT applications

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title:	Introduction	to	SWIFT	No. of	hours:
ome Number. I	Langua	age			10	
Content Summar	y:					
Variables & Co	nstants,	Introduction to	funct	ions (me	ethods),	Arrays,
Dictionaries, Data	, Date	and other basic	data 🕴	ypes, En	ums, stru	uctures,
closuresFor, If, sw	itch stat	tement, Object orio	ented o	concepts v	with SWIF	Т, Туре
check, AnyObject,	Any Pr	otocols, Extension	s, Erro	r handling	g, Worki	ng with
classes						
Unit Number: 2	Title:	Working with Xo	ode		No. of 8	hours:
Content Summar	y:					
Introduction to XCODE, COCOA touch framework, iOS application architecture,						
Application lifecycle						
Unit Number: 3	Title:	Introducti	on t	o view	No. of	hours:
	contro	llers and Views			12	

Content Summary: View Controllers, view, view lifecycle, Basic Controls – Label, Buttons, Text field, image View, Table view with default cells and customized cells, Collection view with default cells and customized cells, Picker view, Date picker, scroll view, navigation and Tab bar controller, Understanding Interface builder, XIB files, Creating outlets and Actions, Handling touch and gesture events, Segment and Page control, switch view, UIAlertView

Unit Number: 4	Title: Integrating with Database	No. of hours: 10	
Content Summary:			
	lata storage methods in iOS, Using Co aults, Property List	re Data, SQLite	

Learning Experiences:

- 5. Lecture PPTs will introduce core iOS development concepts, covering Swift programming and iOS app architecture in detail.
- Problem-based theory assignments will engage students in applying Swift programming concepts, such as control flow and object-oriented principles, to real-world scenarios.
- Project-based lab assignments will offer hands-on experience in developing iOS applications using Xcode, view controllers, and integrating with databases.
- 8. Question banks will reinforce key concepts, helping students prepare for exams and master the development of iOS applications.
- 9. Model question papers will simulate exam scenarios, enabling students to practice and prepare effectively for assessments on iOS app development.
- 10.Continuous assessment will provide regular feedback, ensuring students stay on track and improve their skills in Swift programming and iOS app development.
- 11.Support & Feedback will be available through the course instructor, encouraging collaboration and peer review, particularly in building robust and user-friendly iOS applications.

References

- iOS 14 Programming for Beginners: Kickstart your iOS app development journey with the Swift programming language and Xcode 12, 6th Edition, Ahmad Sahar and Craig Clayton
- 2. Mastering iOS 14 Programming: Build professional-grade iOS applications with Swift 5 and Xcode 12

Additional Readings:

Online Learning Resources for Mobile Application Development Using iOS

- Apple Developer Documentation
 - **Description:** Comprehensive documentation and tutorials for iOS app development using Swift and Xcode.
 - Link: <u>Apple Developer Documentation</u>
- Ray Wenderlich: iOS and Swift Tutorials
 - **Description:** A collection of high-quality tutorials and courses on iOS app development, covering Swift, Xcode, and various iOS frameworks.
 - Link: <u>Ray Wenderlich iOS Tutorials</u>
- GitHub: iOS Development Resources
 - **Description:** A curated list of open-source projects, libraries, and resources for learning and improving iOS development skills.
 - Link: <u>GitHub iOS Development Resources</u>

MOBILE APPLICATION

DEVELOPMENT USING IOS LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Mobile Application Development using iOS Lab	ENSP459	0-0-2	1
Type of Course:	Minor (Department Elective III)		
Pre-requisite(s), if any: Basics of Android			

Lab Experiments

Defined Course Outcomes

COs	
CO 1	Understand and apply fundamental concepts of iOS development using Xcode and the Cocoa Touch framework to build robust and user-friendly applications.
CO 2	Develop interactive and dynamic user interfaces in iOS applications using view controllers, views, and gesture recognizers.
CO 3	Create and manage user interfaces and view controllers in iOS applications using Xcode, demonstrating proficiency in Interface Builder and UIKit components.
CO 4	Develop interactive and dynamic user interfaces in iOS applications using view controllers, views, and gesture recognizers.

S.N	Experiment	COs
-1	Set up the iOS development environment by installing Xcode $\frac{24}{24}$	CO1 0 Page

	Create a simple "Hello, World!" iOS application to familiarize with			
	the Xcode IDE and Swift programming basics.			
2	Develop a basic iOS application that demonstrates the use of Swift	CO1		
	syntax, variables, data types, and control flow. Create a simple			
	calculator app to perform basic arithmetic operations.			
3	Use Xcode and Interface Builder to design a user interface for an	CO1		
	iOS app. Create a simple user interface with labels, buttons, and			
	text fields, and handle user interactions.			
4	Implement a simple iOS app to demonstrate the app lifecycle and	CO1		
	navigation between view controllers. Create a multi-screen app			
	that navigates between different views using navigation			
	controllers.			
5	Design a responsive user interface using Auto Layout and the	CO2		
	constraint system. Create an iOS app with a login screen that			
	adjusts to different screen sizes and orientations.			
6	Implement navigation between different views using storyboards	CO2		
	and segues. Create a multi-screen app with a main menu and			
	detailed views for each menu item.			
7	Implement gesture recognition and touch event handling in an iOS	CO2		
	app. Create an app that responds to tap, swipe, and pinch			
	gestures to perform different actions.			
8	Implement data persistence using Core Data. Create an iOS app	CO3		
	that allows users to add, edit, and delete notes, and save them to			
	a local database.			
9	Use User Defaults and the file system to store and retrieve user	CO3		
	preferences and data. Create an app that saves user settings and			
	displays them when the app is reopened.			
10	Implement offline data storage and synchronization. Create an iOS	CO3		
	app that allows users to add data while offline and syncs with a			
	remote server when the device is back online.			
11	Implement advanced UI components and animations in an iOS	CO4		
	1			

241 | P a g e

	app. Create a visually appealing app with custom views,			
	animations, and transitions between screens.			
12	Access and use iOS sensors and hardware features. Create an app	CO4		
	that uses the camera to take photos, and the GPS to display the			
	user's current location on a map.			
13	Debug and test an iOS app using Xcode's debugging tools.	CO4		
	Implement unit tests and UI tests to ensure the app functions			
	correctly under different scenarios.			

DEVOPS & AUTOMATION

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
DevOps & Automation	ENSP411	4-0-0	4
Type of Course:	Minor (Department Elective III)		
Pre-requisite(s), if any: Nil			

Course Perspective. Throughout the subject, students will engage in hands-on exercises and projects to gain practical experience with various DevOps tools and practices. By the end of the course, students will be well-equipped to embrace the DevOps culture and apply automation techniques to enhance software development, delivery, and operations processes.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the principles and benefits of DevOps, and its role in enhancing collaboration and efficiency between development and operations teams.
CO 2	Acquire hands-on experience with popular DevOps tools such as Git, Jenkins, Docker, Kubernetes, and Ansible for implementing continuous integration, continuous delivery, and automated deployment processes.
CO 3	Demonstrate proficiency in containerization and orchestration techniques using Docker and Kubernetes for efficient and scalable application deployment and management.
CO 4	Implement configuration management and Infrastructure as Code (IaC) using Ansible and Terraform to automate the provisioning and management $243 Page$

of infrastructure resources.
 Develop skills in monitoring, logging, and security practices in the context of DevOps, ensuring application performance, resilience, and adherence to security best practices.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to DevOps	No. of
		hours: 12

Content Summary:

DevOps Principles and Culture: Understand the core principles of DevOps and its cultural impact. Collaboration, automation, continuous integration, continuous delivery, and continuous deployment.

DevOps Toolchain: Overview of tools and technologies used in DevOps practices. Introduction to popular DevOps tools like Git, Jenkins, Docker, Kubernetes, and Ansible.

Version Control with Git: Branching, merging, and collaborative development using Git. **Continuous Integration (CI)**: Setting up CI pipelines with Jenkins for automated building and testing.

Continuous Delivery and Deployment: Implementing CD pipelines for deploying.

Unit Number: 2	Title: Version Control and CI/CD	No.	of
		hours: 8	5

Content Summary:

Version Control with Git: Version control concepts, Git workflows, and collaboration strategies.

Continuous Integration with Jenkins: Setting up Jenkins pipelines, automated testing, and deployment.

Maven Integration: Integrate Maven for dependency management and building projects.

Unit Number: 3	Title: Containerization and	No. o	f
	Orchestration	hours: 8	

Content Summary:

Introduction to Docker: Docker concepts, container management, and Docker file creation.

Container Orchestration with Kubernetes: Kubernetes architecture, deployment, scaling, and networking.

Docker Compose: Managing multi-container applications with Docker Compose.

Unit Number: 4	Title: Configuration Management and	No. of
	Monitoring	hours: 12

Content Summary:

Configuration Management with Ansible: Ansible playbooks, roles, and infrastructure automation.

Infrastructure as Code (IaC): Terraform for provisioning and managing infrastructure.

Monitoring and Logging: Monitoring tools, log management, and application performance monitoring in DevOps.

Security in DevOps: Implementing security best practices in CI/CD pipelines and containerized environments.

Learning Experiences:

- Lecture PPTs will introduce core DevOps principles, tools, and practices, establishing a strong theoretical foundation.
- Problem-based theory assignments will engage students in applying DevOps concepts such as CI/CD pipelines and version control to practical scenarios.
- Project-based lab assignments will offer hands-on experience with DevOps tools like Git, Jenkins, Docker, and Kubernetes, enhancing practical skills in automation and deployment.
- Question banks will reinforce key concepts, helping students prepare thoroughly for exams on DevOps practices and tools.
- Model question papers will simulate exam scenarios, allowing students to practice and prepare effectively for assessments in DevOps and automation.
- Continuous assessment will provide ongoing feedback, ensuring students can track their progress and improve their proficiency in DevOps tools and techniques.
- Support & Feedback will be available through the course instructor, encouraging collaboration and peer review, particularly in implementing and optimizing DevOps pipelines and automation processes.

References

- Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Authors: Jez Humble and David Farley, Publisher: Pearson Education, Inc., Year: 2011
- The Kubernetes Book, Author: Nigel Poulton, Publisher: Independently published, Year: 2018
- Building Microservices: Designing Fine-Grained Systems, Author: Sam Newman, Publisher: O'Reilly Media, Inc., Year: 2015
- Microservices Patterns: With examples in Java, Author: Eberhard Wolff, Publisher: Manning Publications, Year: 2018
- Terraform: Up & Running: Writing Infrastructure as Code, Author: Yevgeniy Brikman, Publisher: O'Reilly Media, Inc., Year: 2017

Additional Readings:

Online Learning Resources for DevOps & Automation

I) Kubernetes Academy by VMware

- a. **Description:** Free courses provided by VMware on Kubernetes, covering everything from basic concepts to advanced orchestration techniques.
- b. Link: Kubernetes Academy by VMware

II) HashiCorp Learn: Terraform

- a. **Description:** HashiCorp's official resource for learning Terraform, providing tutorials and hands-on labs for infrastructure as code.
- b. Link: <u>HashiCorp Learn Terraform</u>

III) Docker: Docker for Developers

- a. **Description:** Docker's official training resources for developers, covering containerization, Docker Compose, and more.
- b. Link: <u>Docker Docker for Developers</u>

DEVOPS & AUTOMATION LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
DevOps & Automation Lab	ENSP461	0-0-2	1
Type of Course:	Minor (Department Elective III)		
Pre-requisite(s), if any:			

Lab Experiments

Defined Course Outcomes

COs	Course Outcomes		
	Implement collaborative development and continuous integration using		
CO 1	Git and Jenkins, demonstrating proficiency in version control, automated		
	testing, and deployment processes.		
	Develop and deploy microservices applications using Docker for		
CO 2	containerization and Kubernetes for orchestration, managing multi-		
container applications efficiently.			
	Manage automated infrastructure provisioning and configuration using		
CO 3	Ansible and Terraform, demonstrating expertise in infrastructure as code		
	and configuration management.		
CO 4	Implement continuous monitoring, logging, and security best practices in		
	a DevOps environment, ensuring application performance, system health,		
	and data integrity.		

S.N	Experiment	Mapped CO(s)
		248 P a g e

	Commune account	
1	Set up a Git repository and practice branching, merging, and	CO1
	collaborative development. Create a small project and manage	
	code versions using Git.	
2	Install and configure Jenkins for continuous integration. Create	CO1
	a simple CI pipeline that automatically builds and tests a project	
	whenever code changes are committed to the repository.	
3	Implement a continuous delivery pipeline using Jenkins. Deploy	CO1
	a sample application to a staging environment automatically	
	after successful builds and tests.	
4	Implement different Git workflows (e.g., GitFlow, Feature	CO2
	Branch Workflow) for a collaborative project. Manage branches,	
	merges, and resolve conflicts.	
5	Set up a Jenkins pipeline for continuous integration. Configure	CO2
	automated testing and deployment for a sample project.	
	Integrate with a version control system like Git.	
6	nstall Docker and create Dockerfiles for a sample application.	CO3
	Build, run, and manage containers using Docker commands.	
7	Use Docker Compose to manage multi-container applications.	CO3
	Create a Docker Compose file to run a web application with a	
	database and other services.	
8	Use Terraform to provision and manage cloud infrastructure.	CO4
	Create Terraform scripts to deploy a web application on a cloud	
	provider (e.g., AWS, Azure).	
9	Set up monitoring and logging for a sample application. Use	CO4
	tools like Prometheus, Grafana, and ELK Stack (Elasticsearch,	
	Logstash, Kibana) to monitor and analyze application	
	performance and logs.	
L		

.NET FRAMEWORK

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
.NET Framework	ENSP413	4-0-0	4
Type of Course:	Minor (Department Elective III)		
Pre-requisite(s), if any:			

Course Perspective. The ".NET Framework" syllabus covers introduction and components of .NET, programming languages, Visual Studio, OOP, exception handling, memory management, Windows Forms/WPF, ASP.NET, web services, .NET Core, Entity Framework, and WCF. Emphasis on practical application and development skills for building robust and secure applications.

The Course Outcomes (COs). On completion of the course the participants will

ha	. .
De	

COs	Statements		
CO 1	Understand .NET Framework's architecture, CLR, and CTS for cross- language integration and platform independence.		
CO 2	Apply OOP concepts in .NET for designing robust software solutions.		
CO 3	Utilize Visual Studio debugging for diagnosing and fixing errors in .NET applications.		
CO 4	Demonstrate proficiency in memory management and garbage collection in .NET.		
CO 5	Design web applications using ASP.NET, incorporating best practices.		

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number:1	Title: .NETFramework		
		No. of hours: 8	
Content Summary	•	L	
NET Framework - A	rchitecture, Common Language Runtime, C	Common Type	
System, Namespa	ices, Assemblies, Memory Manageme	ent, Process	
Management, Class	Libraries		
	Title:.NET Framework		
Unit Number:2	Fundamentals	No. of hours: 8	
Content Summary	•		
Object-Oriented Pro	gramming (OOP) in .NET, Classes, objects,	and inheritance,	
Exception Handling	and Debugging, Debugging techniques and	d tools in Visual	
Studio, Logging and error reporting in .NET applications, Memory Management			
and Garbage Collection, Automatic memory management in .NET, Garbage			
collection, Finalizers	and the Dispose pattern		
Unit Number:3	Title: Building Applications with	No. of hours: 12	
	.NET Framework		
Content Summary			
.NET - Declaration	, Expression, Control Structures, Function	on, String, Array	
Encapsulation, Cla	Encapsulation, Class, Property, Indexer, Delegate, Inheritance, Interface,		
Polymorphism, Exception Handling, Modules, Graphics, File handling and Data			
AccessNET – Form	n- Event–Form Controls – Containers – Men	us - Data controls	
Printing – Reporting	g – Dialogs – Components - Single and	Multiple Documen	
Interfaces.			
Unit Number:4	Title: ASP.NETFramework		
		No. of hours: 12	

Content Summary:

ASP.NET – Web Pages, Web Forms, Web Site Design, Data Controls, Validation Controls, HTML, Navigation Controls, Login Controls, Reports - Master Pages – Web Service Architecture - Basic Web Services – Web Reference – Standards

Learning Experiences:

- Lecture PPTs will introduce the architecture and core components of the .NET Framework, providing a solid theoretical foundation.
- Problem-based theory assignments will engage students in applying OOP principles and .NET debugging techniques to solve real-world programming challenges.
- Project-based lab assignments will offer hands-on experience in developing robust applications using .NET, focusing on memory management, Windows Forms, and ASP.NET.
- Question banks will reinforce essential .NET concepts, ensuring students are well-prepared for exams and can effectively apply their knowledge.
- Model question papers will simulate exam scenarios, helping students practice and prepare for assessments on .NET application development.
- Continuous assessment will provide regular feedback, allowing students to track their progress and refine their skills in .NET programming and web development.
- Support & Feedback will be available through the course instructor, encouraging collaboration and peer review, particularly in building and optimizing .NET applications using best practices.

Textbooks

- Pro C# 8 with .NET Core: Foundational Principles and Practices in Programming by Andrew Troelsen and Philip Japikse, Apress, 9th Edition, 2020
- 2. Pro ASP.NET Core 3 by Adam Freeman, Apress
- 3. ASP.NET Core in Action by Andrew Lock

Additional Readings:

Online Learning Resources:

- I) Online Tutorials and Documentation: Direct students to the official Microsoft documentation for .NET Framework, which provides comprehensive guides and resources. <u>Microsoft .NET</u> <u>Documentation</u>
- II) Hands-on Coding Exercises: Assign coding exercises from platforms like LeetCode or HackerRank that focus on implementing concepts of .NET Framework. <u>LeetCode HackerRank</u>

.NET FRAMEWORK LAB

Program Name:	Bachelor in Computer Applications (BCA)				
Course Name:	Course Code L-T-P		Credits		
.NET Framework Lab	ENSP463	0-0-2	1		
Type of Course:	rse: Minor (Department Elective III)				
Pre-requisite(s), if any: Nil					

Defined Course Outcomes

COs	Statements
CO 1	Understand and apply object-oriented design principles, exception handling, memory management, and debugging techniques to develop robust .NET applications.
CO 2	Develop graphical user interfaces and handle events in .NET applications to create interactive and user-friendly software solutions.
со з	Implement web development techniques in ASP.NET, including web forms, user authentication, master pages, and web services to build secure and dynamic web applications.
CO 4	Analyze and utilize data handling, reporting, and visualization techniques to create comprehensive and functional software systems for various domains.

Lab Experiments

S.N	Experiment					
1	Explore the architecture of the .NET Framework. Create a simple					
	console application to understand the basic structure and	CO1				
	components of a .NET project.					
2	Demonstrate the functionality of the Common Language					
	Runtime (CLR). Create a .NET application that uses various					
	data types and namespaces to show how the CLR manages	CO1				
	execution.					
3	Implement a .NET application that showcases the Common Type					
	System (CTS). Define and use various data types, and	CO1				
	demonstrate type conversion and interoperability.					
4	Create and manage assemblies in a .NET application.					
	Demonstrate how to build, reference, and use assemblies in a	CO1				
	multi-project solution.					
5	Implement a simple object-oriented application in .NET. Define					
	classes, create objects, and demonstrate inheritance and	CO2				
	polymorphism.					
6	Implement a .NET application that logs errors and handles					
	exceptions gracefully. Use a logging framework (e.g., NLog,	CO2				
	log4net) to record application events and errors.					
7	Build a .NET application demonstrating advanced OOP concepts					
	such as encapsulation, properties, indexers, delegates,	CO3				
	interfaces, and polymorphism.					
8	Create a .NET application that handles graphics and file I/O.					
	Implement functionality to draw shapes, handle images, and	CO3				
	perform file read/write operations.					
9	Implement a .NET application with a rich user interface. Use	CO3				

	forms, event handling, form controls, containers, menus, data						
	controls, printing, and reporting functionalities to create a						
	feature-rich application.						
10	Create a basic ASP.NET web application. Design web pages and						
	web forms to understand the structure and components of an	CO4					
	ASP.NET project.						
11	Develop an ASP.NET application with user authentication. Use						
	login controls to implement user authentication and	CO4					
	authorization, and create a simple reporting feature to display						
	user data.						
12	Create and consume a basic web service in ASP.NET. Implement a						
	web service that provides data to a client application, and	CO4					
	demonstrate how to use web references to integrate the web						
	service with an ASP.NET project.						

NEW AGE PROGRAMMING

LANGUAGES

Program Name:	Bachelor in Computer Applications (BCA)					
Course Name:	Course Code	L-T-P	Credits			
New-Age programming languages	ENSP415	4-0-0	4			
Type of Course:	Minor (Department Elective III)					
Pre-requisite(s), if any: Nil						

Course Perspective. New-Age programming languages (GO, F#, Clojure, Kotlin) provides an introduction to the concepts and applications of modern programming languages. It explore the features and benefits of GO, F#, Clojure, and Kotlin, and develop practical skills in programming using these languages. The course will cover language syntax, data types, control structures, functional programming concepts, concurrency, and integration with other technologies.

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understand principles and paradigms of modern programming languages.
CO 2	Develop proficiency in syntax, data structures, and control flow of each
	language.
CO 3	Explore unique features and strengths of each language.
CO 4	Apply development tools to improve code quality and productivity.

Design and implement projects integrating multiple programming
languages.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit	Title: GO programming	No. of hours: 10					
Number: 1	Language						
Content Summary:							
Overview and	d Comparison: Overview of GO, F	#, Clojure, and Kotlin, Comparison					
with traditiona	al programming languages, Instal	lation and setup of development					
environment,							
GO Program	ming Basics: Introduction to G	O syntax and data types, Control					
structures in (GO, Functions and packages, Arra	ys, slices, and maps, Structs and					
custom data ty	pes,Pointers and memory managen	nent					
Unit	Title: F# Programming	No. of hours: 10					
Number: 2	Language						
Content Sum	mary:						
Introduction t	o F# syntax and functional pro	gramming concepts, Data Types,					
Variables, Ope	rators, Decision Making, Loops, Fun	ctions, Strings, Options, Immutable					
data types and	l pattern matching, Higher-order fu	nctions and currying, Asynchronous					
and parallel p	rogramming in F#, Object-Oriente	d Programming with F#, Database					
access with F#	, Querying and manipulating data u	using F#, Integration with relational					
and NoSQL dat	tabases						
Unit	Title: Introduction to Clojure	No. of hours: 10					
Number: 3	Programming						
Content Summary:							
Introduction to Clojure: Overview of Clojure and its features, Setting up the							
development e	development environment,						

258 | P a g e

Basic Syntax and Functional Programming, Basic syntax and data structures, Functional programming concepts, Immutable data and pure functions, Higher-order functions and recursion, Collections and sequence operations, Restructuring and pattern matching

Error Handling and Testing: Exception handling and error management in Clojure, Testing strategies and frameworks in Clojure,

Data Manipulation and Transformation: Data manipulation with Clojure's sequence functions, Data transformation with transducers, Data-driven development with data literals and data readers

Unit	Title: Introduction to Kotlin	No. of hours: 10		
Number: 4	Programming			

Content Summary:

Overview of Kotlin and its advantages, Setting up the development environment, Basic syntax and data types in Kotlin, Conditional statements and loops, Function declarations and parameters, Lambda expressions and higher-order functions,

Object-Oriented Programming in Kotlin: Classes, objects, and inheritance, Properties and access modifiers, Interfaces and abstract classes, Understanding nullable and non-nullable types, Safe calls and the Elvis operator, Type inference and smart casting,

Collections and Functional Programming: Working with lists, sets, and maps in Kotlin, Collection operations and transformations, Introduction to functional programming concepts in Kotlin, Creating extension functions in Kotlin, Using DSLs for domain-specific problems, Builder pattern and DSL implementation.

Learning Experiences:

- Lecture PPTs will introduce the core principles and syntax of modern programming languages like GO, F#, Clojure, and Kotlin.
- Problem-based theory assignments will engage students in applying unique language features and paradigms to solve programming challenges.

- Project-based lab assignments will offer hands-on experience in developing applications using GO, F#, Clojure, and Kotlin, focusing on functional programming and concurrency.
- Question banks will reinforce key concepts across all languages, helping students prepare effectively for exams.
- Model question papers will simulate exam scenarios, allowing students to practice and anticipate the types of questions related to new-age programming languages.
- Continuous assessment will provide regular feedback on student progress, ensuring they master the syntax, data structures, and unique features of each language.
- Support & Feedback will be available through the course instructor, encouraging collaboration and peer review, particularly in integrating multiple programming languages into cohesive projects.

Text Books:

- 1. The Go Programming Language, Alan A. A. Donovan and Brian W. Kernighan, Addison-Wesley Professional.
- 2. An Introduction to Programming in Go, Caleb Doxsey, CreateSpace Independent Publishing.

References

- 3. Real-World Functional Programming: With Examples in F# and C#, Tomas Petricek and Jon Skeet, Manning.
- 4. Programming F# 3.0: A Comprehensive Guide for Writing Simple Code to Solve Complex Problems, Chris Smith, O'Reilly Media.
- 5. Getting Clojure: Build Your Functional Skills One Idea at a Time, Russ Olsen, O'Reilly.
- 6. The Joy of Clojure, Michael Fogus and Chris Houser, Manning Publication.
- 7. Atomic Kotlin, Bruce Eckel and Svetlana Isakova, Mindview LLC.
- 8. Kotlin in Action, Dmitry Jemerov and Svetlana Isakova, Manning Publication.

Additional Readings:

Online Learning Resources for New-Age Programming Languages

- a) Go (Golang)
 - 1. Coursera: Programming with Google Go
 - 1. **Description:** An introductory course to Go programming, covering language syntax, data structures, and more.
 - 2. Link: Coursera Programming with Google Go

2. Go by Example

- 1. **Description:** A hands-on introduction to Go using annotated example programs.
- 2. Link: Go by Example
- b) **F#**

1. Microsoft Learn: Introduction to F#

- 1. **Description:** A series of modules introducing the F# language, its syntax, and functional programming concepts.
- 2. Link: <u>Microsoft Learn Introduction to F#</u>

c) **Clojure**

1. ClojureBridge

- 1. **Description:** Free Clojure workshops for beginners, including resources and exercises.
- 2. Link: <u>ClojureBridge</u>

2. Learn Clojure: Clojure for the Brave and True

- 1. **Description:** A beginner-friendly book that teaches Clojure through real-world projects and examples.
- 2. Link: Clojure for the Brave and True

NEW AGE PROGRAMMING

LANGUAGES LAB

Program Name:	Bachelor in Computer Applications (BCA)					
Course Name:	Course Code	L-T-P	Credits			
New Age Programming languages Lab	ENSP465	0-0-2	1			
Type of Course:	ent Elective III)					
Pre-requisite(s), if any: Nil	•					

Course Outcomes (CO)

COs	Statements
CO1	Understand the fundamental principles and paradigms of modern programming languages.
CO2	Develop proficiency in using the syntax, data structures, and control flow constructs of each language.
CO3	Explore the unique features and strengths of each language, such as Go's focus on concurrency, F#'s functional programming capabilities, Clojure's emphasis on immutability and simplicity, and Kotlin's interoperability with existing Java code.
CO4	Apply the languages' respective development tools and best practices.
CO5	Design and implement projects that utilize the strengths of each language to tackle complex problems or tasks.

Lab Experiments

S.N	Experiment Title	CO					
1	Develop a RESTful API for a simple blog application in Go. The API should	CO1					
	allow users to create, read, update, and delete blog posts. Use Go's built-						
	in net/http package and struct types for handling blog post data						
2	Create a command-line tool in Go that fetches and displays current	CO1					
	weather information for a specified city. Use a public weather API and						
	Go's JSON parsing capabilities to implement this tool.						
3	Set up the F# development environment. Create a simple F# program to	CO1					
	demonstrate basic syntax, data types, and variables.						
4	Develop a functional calculator application in F#. The calculator should	CO2					
	support basic arithmetic operations, as well as more advanced functions						
	like trigonometry and logarithms. Use pattern matching and immutable						
	data structures to handle calculations.						
5	Create a small web application in F# using Suave (a lightweight web	CO2					
	server library). The application should allow users to register, log in, and						
	create simple posts. Implement basic session management and data						
	storage.						
6	Build a financial portfolio tracker in F#. The application should allow	CO2					
	users to input and track their investments, calculate current value, and						
	generate reports. Use F#'s asynchronous programming capabilities to						
	fetch real-time stock prices from a financial API.						
7	Develop a to-do list application in Clojure. The application should allow	CO3					
	users to add, remove, and mark tasks as complete. Use Clojure's						
	sequence operations and immutable data structures to manage tasks.						
8	Create a simple web scraper in Clojure. The scraper should fetch data	CO3					
	from a specified website, parse the HTML content, and extract specific						
	information. Use Clojure's libraries for HTTP requests and HTML parsing.						
9	Develop a Kotlin-based Android application for tracking fitness activities.	CO4					
	The app should allow users to log their workouts, view statistics, and set						

	goals.	Use	Kotlin's	object-oriented	features	and	Android	SDK	for	
	develo	pment	t.							
10	10 Create a Kotlin DSL (Domain-Specific Language) for generating HTML C							CO4		
	pages. The DSL should allow users to define HTML structures using Kotlin									
	syntax	and g	generate f	the corresponding	g HTML co	de.				

Summer Internship-III

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name: Summer Internship-III	Course Code ENSI451	L-T-P	Credits
Type of Course:	INT		
Pre-requisite(s), if any: NA			

Course Outcomes (CO)

CO1	Apply theoretical knowledge from core subjects to real-world problems
	in an industry or academic setting.
CO2	Demonstrate the acquisition of new technical skills relevant to the field
	of computer science and engineering during the internship.
CO3	Develop a comprehensive case study, project, or research paper that
	reflects the practical application of internship experiences.
CO4	Present internship outcomes effectively, showcasing professional
	growth, technical competencies, and communication skills.

Duration:

The internship will last for six weeks. It will take place after the completion of the 6^{th} semester and before the commencement of the 7^{th} semester.

Internship Options:

Students can choose from the following options:

- Industry Internship (Offline) or Internship in Renowned Academic Institutions (Offline):
 - Students must produce a joining letter at the start and a relieving letter upon completion.

Report Submission and Evaluation:

1. **Report Preparation:**

 Students must prepare a detailed report documenting their internship experience and submit it to the department. A copy of the report will be kept for departmental records.

2. Case Study/Project/Research Paper:

- Each student must complete one of the following as part of their internship outcome:
 - 1. A case study
 - 2. A project
 - 3. A research paper suitable for publication

3. Presentation:

• Students are required to present their learning outcomes and results from their summer internship as part of the evaluation process.

Evaluation Criteria for Summer Internship (Out of 100 Marks):

valuation Criteria	Maximum Marks
Relevance to Learning Outcomes	30 Marks
- Case Study/Project/Research Paper Relevance	15 Marks
- Application of Theoretical Knowledge	15 Marks
Skill Acquisition	40 Marks
- New Technical Skills Acquired	20 Marks
- Professional and Soft Skills Development	20 Marks
Report Quality	15 Marks
- Structure and Organization	8 Marks
- Clarity and Comprehensiveness	7 Marks
Presentation	15 Marks
- Content Delivery	8 Marks
- Visual Aids and Communication Skills	7 Marks
Total 100 Marks	IL

Detailed View:

1. Relevance to Learning Outcomes (30 Marks)

• Case Study/Project/Research Paper Relevance (15 Marks):

- 1. Directly relates to core subjects: 15 marks
- 2. Partially relates to core subjects: 10 marks
- 3. Minimally relates to core subjects: 5 marks
- 4. Not relevant: 0 marks

• Application of Theoretical Knowledge (15 Marks):

- 1. Extensive application of theoretical knowledge: 15 marks
- 2. Moderate application of theoretical knowledge: 10 marks
- 3. Minimal application of theoretical knowledge: 5 marks
- 4. No application of theoretical knowledge: 0 marks

2. Skill Acquisition (40 Marks)

• New Technical Skills Acquired (20 Marks):

- 1. Highly relevant and advanced technical skills: 20 marks
- 2. Moderately relevant technical skills: 15 marks
- 3. Basic technical skills: 10 marks
- 4. No new skills acquired: 0 marks

• Professional and Soft Skills Development (20 Marks):

- Significant improvement in professional and soft skills: 20 marks
- 2. Moderate improvement in professional and soft skills: 15 marks
- 3. Basic improvement in professional and soft skills: 10 marks
- 4. No improvement: 0 marks

3. Report Quality (15 Marks)

• Structure and Organization (8 Marks):

- 1. Well-structured and organized report: 8 marks
- 2. Moderately structured report: 6 marks
- 3. Poorly structured report: 3 marks
- 4. No structure: 0 marks
- Clarity and Comprehensiveness (7 Marks):

- 1. Clear and comprehensive report: 7 marks
- 2. Moderately clear and comprehensive report: 5 marks
- 3. Vague and incomplete report: 2 marks
- 4. Incomprehensible report: 0 marks

4. Presentation (15 Marks)

• Content Delivery (8 Marks):

- 1. Clear, engaging, and thorough delivery: 8 marks
- 2. Clear but less engaging delivery: 6 marks
- 3. Somewhat clear and engaging delivery: 3 marks
- 4. Unclear and disengaging delivery: 0 marks

• Visual Aids and Communication Skills (7 Marks):

- Effective use of visual aids and excellent communication skills: 7 marks
- Moderate use of visual aids and good communication skills: 5 marks
- 3. Basic use of visual aids and fair communication skills: 2 marks
- 4. No use of visual aids and poor communication skills: 0 marks

Total: 100 Marks

Career Readiness Boot Camp

Program	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Career Readiness Boot Camp		2-0-0	2
Type of Course:	SEC		1
Pre-requisite(s), if any: Basics of Java,	/C++ Programming, DI	BMS, Data Stru	ucture
Preface:			

This comprehensive course is meticulously designed to equip students with essential skills in Data Structures, Algorithms, Object-Oriented Programming, Java, and Database Management Systems, along with essential soft skills and aptitude preparation. Through a combination of self-paced online modules, hybrid learning experiences, and offline assessments, students will gain a profound understanding of foundational and advanced concepts crucial for software development and data management. The course places a strong emphasis on practical applications, problem-solving techniques, and the development of robust, maintainable code.

In addition to the core technical skills, students will be prepared for real-world scenarios through aptitude exams, soft skills training, and mock interviews, ensuring they are wellrounded and industry-ready. A key feature of this course is the integration of free certifications from Infosys Springboard, providing students with recognized credentials that enhance their employability and align with industry standards.

To successfully complete the course, students are required to pass each individual component, contributing to the final mark out of 100. This course is an integral part of the Practical Training Module (Bootcamp training) in the curriculum, and upon successful completion, students will earn 2 credits. The rigorous evaluation process ensures that students not only acquire the necessary knowledge but also demonstrate their ability to apply these skills in professional settings.

Students must obtain specific free certifications from Infosys Springboard (<u>https://infytq.onwingspan.com/web/en/page/home</u>).

Course Outcomes (COs):

CO1: Demonstrate understanding of basic data structures (arrays, strings, linked lists) and their operations to solve simple computational problems

CO2: Apply advanced data structures (stacks, queues, trees, graphs) to develop efficient algorithms for complex problem-solving.

CO3: Design and implement software solutions using Object-Oriented Programming principles, ensuring code reusability and maintainability.

CO4: Develop robust Java applications, utilizing object-oriented features, exception handling, and file I/O operations effectively

CO5: Analyze and optimize database systems using SQL for efficient data retrieval,

transaction management, and ensuring data integrity.

Module: 1	Data Structures and Algorithms - Part 1	No. of hours: 30	
		(Online, Self-Paced)	
Content Summary:	Module 1 covers foundational data st	ructures including arrays,	
strings, and linked lis	sts. It introduces key operations and p	practical applications. This	
foundational knowledg	e is crucial for advancing to more comple	x data structures.	
Module: 2	Data Structures and Algorithms - Part 2	No. of hours: 30	
		(Online, Self-Paced)	
Content Summary: Mo	dule 2 focuses on advanced data structur	es such as stacks, queues,	
trees, and graphs. It c	overs essential operations, real-world ap	plications, and their role in	
solving complex proble	ems. Understanding these structures is	vital for effective problem-	
solving and algorithm	optimization.		
Module: 3	Object Oriented Programming	No. of hours:45	
		(Online, Self-Paced)	
Content Summary: covers the fundamental concepts of OOP, including classes, objects,			
inheritance, polymorphism, and encapsulation. It emphasizes designing and implementing			
software using these principles to enhance code reusability and maintainability.			
Module: 4	Programming using Java	No. of hours: 100	
		(Online, Self-Paced)	

Content Summary: basics of Java, including syntax, data types, operators, and control structures. It covers object-oriented principles specific to Java, such as classes, objects, inheritance, and polymorphism, along with advanced topics like exception handling and file I/O. The module aims to build strong foundational skills in Java for developing robust applications.

Module: 5	Database management Systems (part I) No. of hours: 60
	(Online, Self-Paced)

Content Summary: fundamental concepts of database systems, including database models, relational databases, and SQL. It covers key topics such as entity-relationship modeling, normalization, and basic query operations. The module provides a solid foundation in designing and managing databases, focusing on effective data retrieval and manipulation using SQL.

Module: 6	Database management Systems (part II) No. of hours: 40
	(Online, Self-Paced)

Content Summary: advanced database concepts, including transaction management, concurrency control, and database security. This module covers complex SQL queries, stored procedures, and triggers, as well as performance optimization techniques. It focuses on enhancing your skills in managing and optimizing large-scale databases, ensuring data integrity, and implementing robust security measures.

Module: 7	Aptitude Exam	No. of hours: Online
Module: 8	Independent Evaluation through 3 rd party	No. of hours: Offline
Module: 9	Softs Skills	No. of hours: Online
Module: 10	MOCK Interview	No. of hours: Hybrid

Reference Books:

- "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald
 L. Rivest, and Clifford Stein
- "Cracking the Coding Interview" by Gayle Laakmann McDowell
- "Elements of Programming Interviews" by Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash

- "Head First Java" by Kathy Sierra and Bert Bates
- "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. Sudarshan
- "Introduction to the Theory of Computation" by Michael Sipser
- "Programming Challenges: The Programming Contest Training Manual" by Steven
 S. Skiena and Miguel A. Revilla
- "The Algorithm Design Manual" by Steven S. Skiena
- "Algorithms" by Robert Sedgewick and Kevin Wayne
- "Effective Java" by Joshua Bloch

Evaluation Criteria:

Module	Link	Hrs	Mark s
Data Structures and Algorithms - Part 1	https://infytq.onwingspan.com/web/en/ app/toc/lex_auth_01254096991326208 01065_shared/overview	30	10
Data Structures and Algorithms - Part 2	https://infytq.onwingspan.com/web/en/ app/toc/lex_auth_01276673846938828 83448_shared/overview	30	10
Object Oriented Programming	https://infytq.onwingspan.com/web/en/ app/toc/lex auth 01254097227492556 81063 shared/overview	40	10
Programming using Java	https://infytq.onwingspan.com/web/en/ app/toc/lex auth 01288046454761881 6347 shared/overview	100	10
Database management Systems (part I)	https://infytq.onwingspan.com/web/en/ app/toc/lex auth 01275806667282022 456 shared/overview	60	10
Database management Systems (Part II)	https://infytq.onwingspan.com/web/en/ app/toc/lex auth 01276730056291942 41 shared/overview	40	
Aptitude Exam	Online Sessions to be conducted by	NA 2724	10 Page

	KRMU		
AMCAT (Aspiring Minds Computer Adaptive Test)	To be organized by KRMU through External agency	NA	20
Softs Skills	Online Sessions to be conducted by KRMU	NA	10
MOCK Interview	To be organized by KRMU	NA	10
			100

*Please Note: No end term evaluations will be done

Student Learning Experiences

- Foundational Mastery: Students will gain a strong foundation in data structures and algorithms, essential for advanced problem-solving in computer science.
- Hands-On Programming: Through extensive Java programming exercises, students will develop robust applications, reinforcing object-oriented principles.
- Advanced Database Skills: The course will enhance students' ability to manage and optimize databases, ensuring data integrity and effective transaction management.
- Practical Problem Solving: Students will apply advanced data structures to solve complex problems, preparing them for real-world challenges.
- Real-World Readiness: Soft skills training and mock interviews will equip students with the interpersonal and professional skills needed for career success.
- Self-Paced Learning: The online, self-paced modules allow students to learn at their own pace, ensuring a deep and thorough understanding of each topic.
- Comprehensive Evaluation: Independent evaluations and aptitude exams will rigorously assess students' knowledge and readiness for the tech industry.
- Certification and Credibility: Earning certifications from Infosys Springboard will enhance students' resumes and demonstrate their competence in industry-relevant skills.

(DEPARTMENT ELECTIVE-IV)

SECURE CODING

AND VULNERABILITIES				
Program Name: Bachelor in Computer Applications (BCA)				
Course Name:	Course Code L-T-P Credits			
Secure Coding & Vulnerabilities	ENSP301	4-0-0	4	
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)			
Pre-requisite(s), if any:	1			

Course Perspective. This course provides an in-depth exploration of secure coding practices and the identification and mitigation of common vulnerabilities in software development. Students will gain a solid foundation in security concepts, secure application design, and the implementation of security best practices throughout the software development lifecycle. By understanding the principles of secure coding and the types of vulnerabilities that can compromise applications, students will be equipped to develop robust, secure software. The course covers essential topics such as input validation, authentication, cryptography, buffer overflows, SQL injection, and application security testing. The course is divided into four modules:

- a) Introduction to Coding and Security
- b) Secure Application Design and Architecture
- c) Secure Coding Practices and Vulnerabilities
- d) Application Security Testing and Deployment

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements			
CO 1	Understand different types of application security threats and their potential impact.			
CO 2	Apply secure design principles and architectures to develop robust and secure applications.			
CO 3	Implement secure coding practices for input validation, authentication, cryptography, session management, and error handling.			
CO 4	Conduct static and dynamic application security testing to identify vulnerabilities and implement secure deployment and maintenance practices.			

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit	Title:	Introduction to coding and	No of hourse 10		
Number: 1	Securi	ity	No. of hours: 10		
Content Sum	mary:				
Introduction-se	curity c	oncepts-CIA Triad, Viruses, Trojans, an	d Worms, threat,		
vulnerability, ri	sk, attao	ck. Coding Standards: Dirty Code and I	Dirty Compiler, Dynamic		
Memory Management functions, Common memory management Errors (Initialization					
Errors, Forget t	Errors, Forget to Check Return Values, accessing already freed memory, Freeing the				
same memory	same memory multiple times, Forget to free the allocated memory), Integer Security				
-Introduction to integer types: Integer Data Types, data type conversions, Integer					
vulnerabilities and mitigation strategies					
Unit	Unit Title: Secure Application Design and No. of hours: 10				

Number: 2 Architecture

Content Summary:

Security requirements gathering and analysis, Secure software development life cycle (SSDLC), Security issues while writing SRS, Design phase security, Development Phase, Test Phase, Maintenance Phase, Writing Secure Code – Best Practices SD3 (Secure by design, default and deployment), Security principles and Secure Product Development Timeline.

Unit	Title: Secure Coding Practices and	No. of hours: 10
Number: 3	Vulnerabilities	

Content Summary:

Input validation Techniques-whitelist validation, regular expressions, authentication and authorization, Cryptography, buffer overflows, Session management and protection against session-related attacks, Secure error handling and logging practices, SQL Injection Techniques and Remedies, Race conditions

Unit	Title: Application Security Testing and	No. of hours: 10
Number: 4	Deployment	No. of hours: 10
<u> </u>		

Content Summary:

Security code overview, Secure software installation. The Role of the Security Tester, Building the Security Test Plan. Testing HTTP-Based Applications, Testing File-Based Applications, Testing Clients with Rogue Servers, Static and Dynamic Application Security Testing (SAST & DAST), Secure Deployment and Maintenance, Patch management and software updates, Vulnerability scanning and penetration testing.

Learning Experiences:

- Hands-on Vulnerability Testing: Practice identifying and mitigating common software vulnerabilities.
- Code Review Sessions: Conduct peer code reviews to identify potential security flaws and improve secure coding practices.
- Case Studies: Analyze real-world security breaches to understand how vulnerabilities are exploited.
 277 | P a g e

- Interactive Labs: Implement secure coding techniques like input validation and buffer overflow protection.
- Security Audits: Perform security audits on sample applications to assess their vulnerability to SQL injection, session hijacking, and more.
- Role Play: Simulate the role of both attacker and defender in vulnerability exploitation and mitigation scenarios.
- Project-Based Learning: Develop secure applications using best practices in secure design, coding, and testing.
- Tools Exploration: Learn to use static and dynamic application security testing tools (SAST & DAST) for real-world applications.
- Collaborative Learning: Work in groups to design security testing plans and assess security risks in various application environments.
- Real-World Simulations: Conduct vulnerability scanning and penetration testing in simulated deployment environments.

Text Books and References

- Secure Coding: Principles and Practices, Mark G. Graff, Kenneth R. Van Wyk, O'Reilly Media
- Writing Secure Code, Michael Howard and David LeBlanc, Microsoft Press, 2nd Edition, 2004
- 3. Buffer Overflow Attacks: Detect, Exploit, Prevent by Jason Deckard ,Syngress,1st Edition, 2005
- Threat Modeling, Frank Swiderski and Window Snyder, Microsoft Professional, 1st Edition ,2004
- Secure Coding: Principles and Practices by Mark G. Graff, Kenneth R. van Wyk, Publisher(s): O'Reilly Media, Inc., 2003
- The Software Vulnerability Guide (Programming Series) by H. Thompson (Author), Scott G. Chase, 2005

Additional Readings:

Online Learning References for "Secure Coding and Vulnerabilities"

1. **OWASP - Secure Coding Practices - Quick Reference Guide**

- This guide provides a quick reference to secure coding practices based on OWASP's recommendations for secure software development.
- Link: <u>OWASP Secure Coding Practices</u>

2. NPTEL - Secure Coding

- Offered by IITs through NPTEL, this course covers secure coding practices and principles for writing secure software.
- Link: <u>NPTEL Secure Coding</u>

3. Mozilla Developer Network (MDN) - Web Security

- Comprehensive documentation on web security principles, secure coding practices, and common vulnerabilities in web applications.
- Link: <u>MDN Web Security</u>

4. Google Code University - Web Security

- Learn about web security from Google, including secure coding practices and how to protect web applications from common threats.
- Link: <u>Google Code University Web Security</u>

SECURE CODING

AND

VULNERABILITIES

LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Secure Coding & Vulnerabilities Lab	ENSP351	0-0-2	1
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any:	if any:		

Lab Experiments

Defined Course Outcomes

COs	
	Implement fundamental security concepts such as the CIA Triad
CO 1	(Confidentiality, Integrity, Availability) and demonstrate secure coding
	practices to prevent common vulnerabilities.
CO 2	Analyze and fix memory management errors and integer vulnerabilities,
	applying mitigation strategies to enhance software security.
	Develop secure software by following the Secure Software Development
CO 3	Life Cycle (SSDLC), incorporating security principles and best practices
	throughout the development process.
	Design and test secure applications, performing vulnerability scanning,
CO 4	penetration testing, and implementing security measures to protect
	against attacks such as SQL injection and buffer overflow.

Ex. No	Experiment Title	Mapped CO/COs
P1	Project Title: Secure Memory Management System Problem Statement: Develop a secure memory management system for a critical application such as a healthcare management system. This system should handle dynamic memory allocation and deallocation securely, preventing common memory management vulnerabilities.	CO1
P2	Project Title: Secure E-commerce Platform Design Problem Statement: Design and implement a secure e- commerce platform that ensures data security throughout the software development life cycle (SDLC). The platform should handle sensitive user information securely and provide a robust security architecture.	CO2
P3	Project Title: Secure Banking Application Problem Statement: Develop a secure online banking application that ensures the protection of user data and prevents common vulnerabilities such as SQL injection, buffer overflow, and session hijacking.	CO3
P4	 Project Title: Comprehensive Security Testing and Deployment for a Social Media Platform Problem Statement: Develop a social media platform with a focus on security testing and secure deployment. The platform should protect user data and provide a secure environment for social interactions. 	CO4

CYBER CRIME

INVESTIGATION &

DIGITAL FORENSICS

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Cyber Crime Investigation & Digital Forensics	ENSP303	4-0-0	4
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
re-requisite(s), if any:			

Course Perspective. The course offers an in-depth exploration of the methodologies and techniques employed in identifying, investigating, and prosecuting cybercrimes. As digital technologies permeate every aspect of modern life, understanding how to safeguard and investigate electronic evidence becomes crucial for ensuring security and justice. This course covers the foundational concepts of digital forensics, types of cybercrimes, investigation procedures, and the utilization of forensic tools. It prepares students to handle and analyze digital evidence proficiently, contributing to the effective enforcement of cyber laws. The course is divided into four comprehensive units:

- a) Introduction
- b) Types of Cyber Crimes
- c) Investigation of Cyber Crimes
- d) Forensic Tools and Processing of Electronic Evidence

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the nature and classification of conventional and cyber-crimes.
CO 2	Analyze and identify various types of cyber-crimes and their modes of operation.
CO 3	Evaluate the impact of cyber-crimes on individuals, organizations, and society.
CO 4	Develop an understanding of digital forensics and the investigative procedures used in cyber-crime cases.
CO 5	Apply forensic tools and techniques to retrieve and analyze digital evidence.

Course Outline:

Unit Number: 1	Title: 1	Title: Introduction	No. of hours: 10				
Content:	Content:						
Introduction to	Digital	Forensics, Definition and types of cyl	percrimes, electronic				
evidence and h	andling,	electronic media, collection, searchi	ng and storage of				
electronic med	electronic media, introduction to internet crimes, hacking and cracking, credit card						
and ATM fraud	and ATM frauds, web technology, cryptography, emerging digital crimes and						
modules.							
Number: 2	Title:	Types of Cyber Crimes	No. of hours: 10				

Content:

Crimes targeting Computers: Unauthorized Access Packet Sniffing Malicious Codes including Trojans, Viruses, Logic Bombs, etc. Online based Cyber Crimes: Phishing and its variants Web Spoofing and E-mail Spoofing Cyber Stalking Web defacement financial crimes, ATM and Card Crimes etc. Spamming Commercial espionage and Commercial Extortion online Software and Hardware Piracy Money Laundering Fraud& Cheating Other Cyber Crimes.

Unit	Title: Investigation of Cyber	No. of hours: 10	
Number: 3	Crimes	No. of hours: 10	
Content:			
Investigation	of malicious applications Agencies for ir	vestigation in India,	
their powers a	nd their constitution as per Indian Laws Proce	dures followed by	
First Respond	ers; Evidence Collection and Seizure Pro	ocedures of Digital	
mediums Sec	uring the Scene, Documenting the Sce	ene, Evidence	
Collection and	d Transportation Data Acquisition Data Analys	is Reporting	
Unit	Title: Forensic Tools and Processing of	No. of hours: 10	
Number: 4	Electronic Evidence	NO. OF HOURS: 10	
Content:			
Introduction to Forensic Tools, Usage of Slack space, tools for Disk Imaging, Data			

Recovery, Vulnerability Assessment Tools, Encase and FTK tools, Anti Forensics and probable counters, retrieving information, process of computer forensics and digital investigations, processing of digital evidence, digital images, damaged SIM and data recovery, multimedia evidence, retrieving deleted data: desktops, laptops and mobiles, retrieving data from slack space, renamed file, ghosting, compressed files.

Learning Experiences

 Interactive Lectures and Video Sessions:Students will engage with interactive PowerPoint presentations and video lectures for critical concepts in cyber crime and digital forensics, enhancing understanding through visual and auditory learning.

- Problem-Based Theory Assignments: Theory assignments will focus on realworld cyber crime scenarios, encouraging students to analyze and solve complex problems, thus bridging the gap between theory and practical application.
- Project-Based Lab Assignments:Hands-on lab projects will involve using forensic tools and techniques to investigate simulated cyber crimes, providing practical experience in evidence collection, data analysis, and the application of forensic methodologies.
- Collaborative Group Work:Students will work in groups to tackle case studies and forensic investigations, promoting teamwork, critical thinking, and peer learning. Group activities will include collaborative problem-solving and sharing insights on cyber security issues.
- Continuous Assessment and Feedback:Ongoing assessments, including quizzes, assignments, and practical labs, will monitor progress. Students will receive regular feedback from the course in charge, with opportunities for additional support and guidance as needed.
- Use of ICT Tools and Moodle LMS:All course materials, including lecture notes, assignments, and model question papers, will be accessible through Moodle LMS. Students will also use interactive teaching boards during lectures to visualize complex concepts and engage in real-time discussions.
- Engagement with a Question Bank and Model Papers: A comprehensive question bank and model question papers will be provided to aid in exam preparation, helping students familiarize themselves with potential exam questions and assess their understanding of the syllabus.
- Application of Theoretical Knowledge to Practical Scenarios:Students will apply theoretical knowledge to practical cases and simulations, enabling them to experience the full cycle of a cyber crime investigation, from evidence collection to analysis and reporting.

Text Books & References

1. Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie

- C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011.
- 3. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013.
- Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004.

Additional Readings:

Online Learning References:

- I) Cybrary Digital Forensics
 - a. A free online course that covers various aspects of digital forensics, including tools, techniques, and procedures for investigating cybercrimes.
 - b. Link: Cybrary Digital Forensics

II) Pluralsight - Digital Forensics Fundamentals

- a. This course offers a thorough understanding of digital forensics, covering the fundamentals, tools, and techniques used in the field.
- b. Link: Pluralsight Digital Forensics Fundamentals

III) SANS Institute - Digital Forensics and Incident Response Blog

- a. A blog providing insights, case studies, and updates on the latest in digital forensics and incident response.
- b. Link: SANS Institute Digital Forensics Blog

IV) OWASP - Open Web Application Security Project

- a. Provides resources on web security, including best practices for secure coding and tools for vulnerability assessment, which are essential for investigating cybercrimes.
- b. Link: <u>OWASP Open Web Application Security Project</u>

CYBER CRIME INVESTIGATION &

DIGITAL FORENSICS

LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Cyber Crime Investigation & Digital Forensics Lab	ENSP353	0-0-2	1
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any:			

Proposed Lab Experiments

Defined Course Outcomes

COs	
CO 1	Understand the fundamental concepts and principles of digital forensics and cybercrimes.
CO 2	Apply the knowledge of digital forensics techniques and procedures to
	collect, analyse, and preserve electronic evidence in various types of
	cybercrimes.
CO 3	Evaluate and utilize forensic tools and technologies for data acquisition,
	analysis, and recovery in the investigation of cybercrimes.
CO 4	Analyse and interpret digital evidence obtained from different sources,
	such as electronic media, internet crimes, malicious applications, and
	various forms of cybercrimes.

1	Project Title: Comprehensive Study on Cybercrime and Digital	CO/COs
1	Project Title: Comprehensive Study on Cybercrime and Digital	CO1
	Forensics	
	Problem Statement: Conduct a comprehensive study on various	
	types of cybercrimes and the role of digital forensics in investigating	
	these crimes. The project will involve collecting electronic evidence,	
	understanding cybercrime techniques, and applying digital forensics	
	methodologies.	
2	Project Title: Simulation and Prevention of Cyber Crimes	CO2
	Problem Statement: Develop a comprehensive simulation and	
	prevention strategy for various types of cybercrimes. The project will	
	involve creating scenarios for unauthorized access, phishing, and	
	malware attacks, and implementing preventive measures.	
3	Project Title: Investigation and Reporting of Cyber Crime	CO3
	Incidents	
	Problem Statement: Investigate a simulated cybercrime incident,	
	collect and analyze digital evidence, and report the findings. The	
	project will cover the entire investigation process from securing the	
	scene to data analysis and reporting.	
4	Project Title: Advanced Digital Forensics and Evidence	CO4
	Processing	
	Problem Statement: Develop a system for advanced digital forensics	
	and processing of electronic evidence. The project will involve using	
	forensic tools for data recovery, vulnerability assessment, and	
	processing digital evidence from various devices.	

AI IN CYBER

SECURITY

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
AI in Cyber Security	ENSP305	4-0-0	4
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any:			

Course Perspective. The course delves into the integration of Artificial Intelligence (AI) techniques within the realm of cyber security, highlighting the transformative potential of AI in detecting, preventing, and responding to cyber threats. As cyber threats evolve in complexity and scale, AI offers advanced methodologies to enhance security measures and mitigate risks effectively. This course provides a comprehensive understanding of the applications of AI in cyber security, from fundamental machine learning and deep learning techniques to their practical implementations in threat detection and prevention.

Students will explore the history, evolution, and current trends of AI in cyber security, gaining insights into the ethical considerations and challenges associated with the adoption of AI technologies in this critical field. Through detailed case studies and practical examples, the course bridges theoretical concepts with real-world applications, equipping students with the skills necessary to leverage AI for robust cyber defense strategies.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Understand the concepts and applications of AI in the field of cyber security.
CO 2	Express the ethical and legal considerations associated with the use of AI in cyber security.
CO 3	Determine emerging trends and technologies in AI for cyber security, and their potential impact on the field.
CO 4	Identify strategies for integrating AI-driven solutions into existing cyber security frameworks, policies, and practices.
CO 5	Articulate critical thinking and problem-solving skills to address real-world cyber security challenges using AI techniques.
CO 6	Design machine learning techniques for threat detection and prevention in cyber security, including supervised and unsupervised algorithms.

Course Outline:

Unit	Title: Introduction to AI and Cyber	No. of houses 10		
Number: 1	Security	No. of hours: 10		
Content:		L		
Overview of Ar	tificial Intelligence and its applications in Cyber S	ecurity		
Evolution and impact of AI on Cyber Security				
Understanding	Understanding Cyber Security threats and the role of AI			
Basic principles	Basic principles of Machine Learning (ML) and Deep Learning (DL) in Cyber Security			
Ethical considerations and challenges of AI in Cyber Security				
Unit Number: 2	No. of hours: 1			
Number: 2	Cyber Security	290 P a g e		

Content:				
Introduction to Machine Learning techniques relevant to Cyber Security				
Overview of supe	rvised and unsupervised ML models			
Feature engineer	ng and data preparation for ML models			
Practical applicati	ons and case studies of ML in Cyber Security.			
Unit	Title: Deep Learning Techniques for	No. of hours: 10		
Number: 3	Cyber	No. of hours: 10		
Content:				
Introduction to	Deep Learning and its significance in Cyber Secur	rity		
Applications of	Convolutional Neural Networks (CNNs) and Recur	rent Neural Networks		
(RNNs)				
Overview of Ge	nerative Adversarial Networks (GANs) and their u	se in Cyber Security		
Case studies illu	ustrating the use of DL techniques for Cyber Secu	rity problems		
Unit				
Number: 4	Number: 4Detection and PreventionNo. of hours: 10			
Content:				
AI applications in threat detection and prevention				
Overview of traditional vs. AI-driven threat detection methods				
Fundamentals of supervised and unsupervised ML algorithms for threat detection				
Advanced deep learning techniques for threat detection (CNNs, RNNs)				
Feature selection	n, emerging trends, and challenges in AI for Cyb	er Security		
L				

Learning Experiences:

- Interactive Lectures: Engage with multimedia-rich lectures using PPTs and video materials, providing a thorough overview of AI applications in Cyber Security and foundational concepts of Machine Learning and Deep Learning.
- Hands-On Assignments: Apply theoretical knowledge through problem-based assignments and lab exercises, focusing on real-world scenarios of AI in Cyber Security, such as threat detection and prevention using ML and DL techniques.

- Case Studies and Discussions: Analyze and discuss case studies that demonstrate the practical application of ML and DL in Cyber Security, encouraging critical thinking and application of concepts to solve complex problems.
- Group Projects: Collaborate in groups to work on projects involving AI-driven Cyber Security solutions, fostering teamwork and peer learning, and providing practical experience in developing and implementing secure systems.
- Continuous Assessment: Participate in regular quizzes and assignments to assess understanding and application of course material, with opportunities for feedback and improvement based on performance.
- Use of ICT Tools: Utilize Moodle LMS for accessing course materials, submitting assignments, and engaging in interactive discussions, enhancing the learning experience with technology.
- Support and Feedback: Benefit from regular feedback and additional support from the course instructor, with opportunities to seek help and clarify doubts, ensuring a thorough understanding of complex topics.

Text Book References

- Artificial Intelligence for Cybersecurity" by Bhaskar Sinha (Auerbach Publications)
- 2. Machine Learning and Security: Protecting Systems with Data and Algorithms" by Clarence Chio and David Freeman (O'Reilly Media)

Additional Readings:

Online Learning Resources:

- I) **Cybrary Introduction to Artificial Intelligence for Cyber Security**
 - a. This course offers insights into how AI can be applied to cyber security, including threat detection and response.

b. Link: Cybrary - Introduction to Artificial Intelligence for Cyber Security

II) Pluralsight - Machine Learning and AI for Cybersecurity

- a. This course provides an in-depth look at how machine learning and AI can be used to enhance cyber security measures.
- b. Link: Pluralsight Machine Learning and AI for Cybersecurity

III) FutureLearn - Artificial Intelligence for Cyber Security by Coventry University

- a. This course explores the application of AI in cyber security, covering topics like threat detection, response, and mitigation.
- b. Link: FutureLearn Artificial Intelligence for Cyber Security

IV) MIT OpenCourseWare - Artificial Intelligence

- a. Lecture notes, assignments, and exams from MIT's course on Artificial Intelligence, providing a deep dive into AI concepts applicable to cyber security.
- b. Link: <u>MIT OpenCourseWare Artificial Intelligence</u>

V) **IBM - Introduction to Cyber Security Tools & Cyber Attacks**

- a. A course that covers various cyber security tools and techniques, including the use of AI and machine learning for threat detection and prevention.
- b. Link: IBM Introduction to Cyber Security Tools & Cyber Attacks

AI IN CYBER

SECURITY LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code L-T-P Credits		
AI in Cyber Security		0-0-2	1
Lab	ENSP355		
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any: basic understanding of web development technologies			
such as HTML, CSS, and JavaScript. Additionally, students should have some			
familiarity with networking concepts, operating systems, and databases.			

Defined Course Outcomes

COs	Statement
	Analyze the history, evolution, and ethical considerations of AI in cyber
CO 1	security, documenting key milestones and advancements, and discussing
	the implications of AI applications.
	Implement and evaluate machine learning models for classifying and
CO 2	detecting cyber threats, using various datasets and techniques such as
02	supervised and unsupervised learning, deep learning, and anomaly
	detection.
	Develop and apply feature engineering, data preparation, and model
CO 3	training techniques to enhance the performance and accuracy of cyber
	security models.
	Conduct comprehensive case studies and surveys on the application of AI
CO 4	in cyber security, identifying emerging trends, challenges, and
	documenting methodologies and findings.

Lab Experiments

Ex.	Experiment Title	Mapped
No		CO/COs
P1	Project Title: Comprehensive Analysis of AI in Cyber	CO1
	Security	
	Problem Statement: Conduct a comprehensive analysis of the	
	role of AI in cyber security. The project will involve studying the	
	history, evolution, and current trends in AI applications for	
	cyber security, and understanding the basic principles of	
	machine learning and deep learning in this context.	
P2	Project Title: Machine Learning Models for Cyber Threat	CO2
	Detection	
	Problem Statement: Develop and evaluate different machine	
	learning models for detecting cyber threats. The project will	
	involve implementing supervised and unsupervised learning	
	techniques, performing feature engineering, and analyzing case	
	studies.	
P3	Project Title: Deep Learning Models for Advanced Cyber	CO3
	Threat Detection	
	Problem Statement: Develop and evaluate deep learning	
	models for advanced cyber threat detection. The project will	
	involve implementing CNNs, RNNs, and GANs, and analyzing	
	their applications in cyber security.	
P4	Project Title: AI-Based Comprehensive Threat Detection	CO4
	System	
	Problem Statement: Develop a comprehensive AI-based	
	system for threat detection and prevention in cyber security.	
	The project will involve implementing machine learning and	
	deep learning models and addressing the challenges of	
	traditional threat detection methods.	

SOCIAL MEDIA

SECURITY

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Social Media Security	ENSP307	4-0-0	4
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any:			

Course Perspective. This course introduces students to the critical concepts of social media security, addressing the growing need to understand and manage security and privacy issues in the digital age. Social media platforms have become integral to personal, professional, and commercial interactions, creating a complex landscape of potential security threats and privacy concerns. This course aims to equip students with the knowledge and skills required to navigate and mitigate these risks effectively. Students will explore the technical, legal, and social dimensions of social media security, developing strategies to safeguard personal information, ensure user trust, and comply with legal standards.

The Course Outcomes (COs). On completion of the course the participants will

be:

COs	Statements
CO 1	Demonstrate an understanding of the different types of social media platforms, their features, and their impact on communication, marketing, and society.
CO 2	Acquire knowledge and skills in social media monitoring techniques, including data collection, analysis, and the use of relevant tools and technologies.
CO 3	Develop the ability to analyze and evaluate viral content on social media, understand the factors contributing to its spread, and recognize its implications for marketing and online engagement.
CO 4	Identify the challenges, opportunities, and pitfalls associated with social media marketing, and formulate strategies for effective audience targeting, engagement, and brand promotion.
CO 5	Develop strategies to safeguard personal information, foster user trust, and mitigate associated risks.

Course Outline:

Unit Number: 1	Title: Social Media Overview	No. of hours: 10	
Content Summary:			
Overview of Social Media			
Types and Platforms			
Social Media Monitoring and Analysis			
Data Collection	and Analysis Methods: BoW Model, TF-ID	F297 P a g e	

Network Analy	sis Basics: Node Centrality, Degree Distribu	tion, Clustering Coefficient		
Introduction to	Synthetic Networks: Random Graphs, Pref	erential Attachment		
Unit	Title: Social Media Management and	Media Management and No. of hours: 10		
Number: 2	Marketing			
Content Sum	mary:			
Strategies for I	Recruitment and Employment Screening			
Customer Enga	agement and Content Management			
Evaluating Soc	ial Media Campaigns: Effective vs. Ineffecti	ve		
Ethical Conside	rations and Privacy in Crowdsourcing			
Managing and	Promoting Social Media Presence			
Unit	Title: Privacy Issues in Social Media No. of hours: 10			
Number: 3				
Content Sum	mary:			
Privacy Setting	s and Personal Identifiable Information (PI	I) Leakage		
Types of Privac	y Attacks: Identity Disclosure, Inference At	tacks, De-anonymization		
Privacy Metrics	: k-anonymity, l-diversity, Differential Priva	су		
Balancing Pers	onalization and Privacy			
Impact of Priva	ncy on User Trust			
Unit	Title: Social Media Security: Laws,	No. of hours: 10		
Number: 4	Best Practices, and Case Studies			
Content Summary:				
Legal Aspects: Posting and Content Regulations				
Best Practices: Content Moderation, User Authentication				
Security Aware	ness and Education			

Learning Experiences

- Interactive Lectures and Discussions: Use Lecture PPTs and video lectures to introduce topics, followed by class discussions on current social media trends.
- Hands-on Data Analysis: Conduct practical sessions where students collect and analyze social media data using tools like BoW and TF-IDF.

- Group Social Media Campaign Projects: Students design, implement, and evaluate a mock social media campaign in teams, applying marketing strategies and content management principles.
- Case Study Analysis: Review and present case studies of social media platforms to understand real-world applications and issues.
- Privacy and Security Workshops: Use interactive tools and workshops to explore privacy settings, privacy metrics, and security measures.
- Ethical Dilemma Debates: Engage in debates on ethical issues and privacy concerns related to social media usage.
- Practical Management Tools Sessions: Train students on social media management tools and practices for content moderation and promotion.
- Continuous Assessment and Feedback: Implement regular quizzes, assignments, and peer reviews, with ongoing feedback to track progress.
- Moodle LMS and ICT Integration: Utilize Moodle LMS for course materials, assignments, and discussions, and encourage use of ICT tools for learning.

References

- 1. Mastering Social Media Mining, Bonzanini Marco, Packt Publishing Limited
- Mining the Social Web, Mikhail Klassen and Matthew A. Russell, O'Reilly Media, Inc
- 3. Social media mining: an introduction, Zafarani, Reza, Mohammad Ali Abbasi, and Huan Liu, Cambridge University Press
- Social Media Security: Leveraging Social Networking While Mitigating Risk, Michael Cross, Syngress
- 5. Social Media and the Law: A Guidebook for Communication Students and Professionals, Daxton R. Stewart, Taylor & Francis Ltd

6. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.

Additional Readings:

Online Learning Resources for Social Media Security

R 1. Coursera - Social Media Marketing Specialization

- **Provider:** Northwestern University
- **Description:** This specialization covers the major social media platforms, marketing strategies, and data analysis tools.
- Link: <u>Coursera Social Media Marketing Specialization</u>

R 2. edX - Cybersecurity Fundamentals

- **Provider:** Rochester Institute of Technology
- **Description:** This course offers foundational knowledge in cybersecurity, including threats, vulnerabilities, and defense strategies.
- Link: edX Cybersecurity Fundamentals

R 3. Udemy - The Complete Cyber Security Course: Network Security!

- **Instructor:** Nathan House
- **Description:** This comprehensive course covers network security, including how to secure your network, protect your devices, and more.
- Link: <u>Udemy Cyber Security Course</u>

SOCIAL MEDIA

SECURITY LAB

Program Name:	Bachelor in Computer Applications (BCA)		
Course Name:	Course Code	L-T-P	Credits
Social Media Security Lab	ENSP357	0-0-2	1
Type of Course:	Minor (DEPARTMENT ELECTIVE-IV)		
Pre-requisite(s), if any:			

Course Outcomes (CO)

COs	Statements
C01	Analyze different social media platforms, their features, and the ethical and privacy considerations in crowdsourcing and data handling.
C02	Implement data collection, text analysis, and network analysis techniques on social media datasets, demonstrating proficiency in using APIs and various models.
CO3	Develop strategies and plans for using social media in various contexts such as employment screening, customer engagement, and small business promotion.
CO4	Evaluate privacy settings, metrics, and security incidents on social media platforms, applying best practices for user authentication, access control, and content moderation.

Lab Experiments

Ex.	Experiment Title		
No			
P1	Project Title: Comprehensive Analysis of Social Media	CO1	
	Platforms		
	Problem Statement: Conduct a comprehensive analysis of		
	different social media platforms, their features, and the data they		
	generate. The project will involve collecting and analyzing data		
	from social media, performing content analysis, and		
	understanding network properties.		
P2	Project Title: Effective Social Media Management and	CO2	
	Marketing Strategy		
	Problem Statement: Develop an effective social media		
	management and marketing strategy for a small business. The		
	project will involve analyzing customer engagement, creating		
	marketing strategies, and addressing ethical considerations in		
	social media use.		
P3	Project Title: Privacy Protection in Social Media		
	Problem Statement: Develop strategies and tools to protect user		
	privacy on social media platforms. The project will involve		
	analyzing privacy settings, simulating privacy attacks, and		
	evaluating privacy metrics.		
P4	Project Title: Enhancing Security and Compliance on Social	CO4	
	Media Platforms		
	Problem Statement: Develop a comprehensive approach to		
	enhance security and ensure compliance with laws on social media		
	platforms. The project will involve researching laws, developing		
	best practices, and analyzing case studies of security incidents.		

Industrial Project/R&D Project/Start-up Project

Program	BCA					
Course Name:	Course Code	L-T-P	Credits			
Industrial Project/R&D Project/Start-up Project	ENSI452		12			
Type of Course:	SEC					
Pre-requisite(s), if any:						
Preface:						

The **BCA Semester Full-Time Project Work** is a culmination of the academic journey for engineering students at the School of Engineering & Technology, K.R. Mangalam University. This detailed Standard Operating Procedure (SOP) is designed to guide students through their project, ensuring a comprehensive, practical, and outcome-driven approach that aligns with the principles of the **National Education Policy (NEP) 2020**. The SOP provides a framework for students to choose from three types of projects— **Industrial Projects, Research & Development (R&D) Projects**, and **Start-up Projects**. It emphasizes experiential learning, real-world problem-solving, and interdisciplinary collaboration, reflecting NEP 2020's focus on holistic development, innovation, and entrepreneurship. Students will work under the mentorship of both internal faculty and external experts, ensuring they are equipped with the skills and knowledge required to excel in industry, research, or entrepreneurship.

This document outlines each stage of the project work, from proposal submission to final evaluation, and offers clear guidelines for successful completion. By adhering to this SOP, students will not only demonstrate their technical proficiency but also contribute meaningfully to industry, academia, and society.

Standard Operating Procedure (SOP) for BCA Final Semester Full-Time Project Work

1. Introduction

The **BCA Final Semester Full-Time Project Work** is an essential academic requirement aimed at providing students with the opportunity to apply theoretical knowledge to practical challenges. The project is designed to foster critical thinking, problem-solving, innovation, and research-oriented learning, with a focus on real-world industrial, research, and entrepreneurial domains. Students may choose from:

- **Industrial Project**: Solving real industrial problems in collaboration with an industry partner.
- **Research & Development (R&D) Project**: Contributing to academic and applied research, with external guidance from academic/research institutions.
- **Start-up Project**: Developing and launching innovative start-up ideas with entrepreneurial mentors.

The SOP ensures that the project aligns with **NEP 2020 guidelines**, emphasizing interdisciplinary, practical, and outcome-based learning.

2. Objectives

The primary objectives of the full-time project are:

- **Application of Theoretical Knowledge**: Enabling students to apply their academic learning to practical problems.
- **Holistic Development**: Promoting interdisciplinary learning, critical thinking, creativity, and problem-solving.
- **Research and Innovation**: Encouraging innovative solutions, leading to publications, patents, or prototypes.
- **Industry Collaboration**: Fostering partnerships with industries for realworld problem-solving.
- **Entrepreneurship Development**: Developing entrepreneurial skills and creating viable start-ups.

• **Global Competency**: Ensuring students develop the skills required to excel in global environments through research, innovation, and collaboration.

3. Types of Projects

a) Industrial Project

Students working on **Industrial Projects** will:

- Collaborate with an industry partner.
- Identify specific, real-world challenges faced by the company.
- Propose and implement a solution that provides value to the industry.
- Develop a final product or prototype that can be implemented in the industrial setting.

Project Proposal:

- Problem Statement and Objectives: Identify the industrial problem and outline the objectives.
- Proposed Solution: Present a detailed methodology for solving the problem.
- Deliverables: Define tangible deliverables, including prototypes, software, or hardware.
- Expected Impact: Outline the expected impact on the industry.

Evaluation Criteria:

- Practical implementation and solution viability (40%)
- Project innovation (20%)
- Industrial applicability and impact (20%)
- Final presentation and report quality (20%)

b) Research & Development (R&D) Project

The **R&D Project** focuses on creating innovative research outcomes through collaborations with academic or research institutions. This can result in publications, research reports, or new discoveries.

Project Proposal:

- Literature Review: Detailed research on existing work related to the chosen topic.
- Hypothesis/Research Questions: Define the specific research problem or question.
- Methodology: Include data collection, experimental design, and analysis techniques.
- Research Timeline: Step-by-step phases of research with milestones.

External Mentor: Collaboration with an **external academic expert** is mandatory for research projects. The external mentor must be a research professional with expertise in the specific field of study.

Internal Mentor: Each student will also be assigned an **internal faculty member** who will supervise the project. The internal mentor will ensure that the research meets academic standards and deadlines.

Evaluation Criteria:

- Quality of Research and Novelty (30%)
- Research Methodology (25%)
- Contributions to the field (20%)
- Final Report, Presentation, and Publication (25%)

c) Start-up Project

The **Start-up Project** involves developing a business model or creating a start-up venture. Students work on a product/service idea that addresses a significant market need or societal problem.

Project Proposal:

- Start-up Idea: Explain the business or product idea.
- Market Research: Detailed research on the market, target customers, competitors, and potential revenue streams.
- Business Plan: Define the steps needed to take the idea to market, including funding, development phases, marketing, and operational plans.
- Product Prototype: If applicable, develop a working prototype.

Mentorship:

- External Mentor: An industry/start-up expert will guide the student in refining the idea, business model, and market strategy.
- Internal Faculty Mentor: An internal mentor will provide academic guidance and ensure the start-up idea is feasible and innovative.

Evaluation Criteria:

- Start-up viability and market potential (30%)
- Product or service innovation (30%)
- Prototype/Business Model Development (20%)
- Final Pitch/Presentation and Start-up Plan (20%)

4. Roles and Responsibilities

a) Student's Responsibilities:

- Select a suitable project topic based on interests (industrial, R&D, or startup).
- Draft and submit a detailed proposal with objectives, methodology, timelines, and deliverables.
- Coordinate with both external and internal mentors regularly for feedback and guidance.
- Maintain a weekly progress report for both mentors.
- Submit a final comprehensive report and present the project.

b) Internal Supervisor:

- Guide the student throughout the project.
- Provide academic input and ensure that the project aligns with the program outcomes.
- Conduct progress reviews and ensure timelines are adhered to.
- Evaluate the project at the mid-term and final stages.

c) External Mentor:

• Offer specialized industrial, research, or entrepreneurial guidance. 307 | P a g e

- Provide real-world problem insights for industrial and start-up projects.
- Ensure the project is relevant to the chosen industry, research domain, or start-up ecosystem.
- Participate in the final evaluation of the project.

5. Project Phases

Phase 1: Proposal Submission and Approval

- Students will submit a project proposal during the first two weeks of the final semester.
- The proposal must include the problem statement, objectives, literature review (for R&D projects), methodology, and expected outcomes.
- The proposal is subject to review and approval by the internal supervisor and external mentor.

Phase 2: Planning and Resource Allocation

- Once approved, the student will develop a project plan that includes:
 - **Project Milestones**: Break down the project into smaller tasks with defined milestones.
 - **Resource Requirements**: Identify any software, hardware, lab resources, or tools required for the project.
 - **Team Roles**: For group projects, define the roles of each team member.
 - **Risk Assessment**: Highlight potential risks and the corresponding mitigation strategies.

Phase 3: Mid-term Review

- A mid-term review will be conducted halfway through the project to assess progress.
- Students will present their work to a committee consisting of the internal supervisor, external mentor, and department head.
- The review will assess the progress against the timeline and suggest course corrections if needed.

Phase 4: Final Execution and Evaluation

- **Industrial Projects**: Students must submit a prototype or industrial report, demonstrating the solution's applicability to the industry.
- **R&D Projects**: Students must submit a final research report or publish findings in academic journals.
- **Start-up Projects**: Students must present a business plan, along with a working prototype, market analysis, and revenue model.

Phase 5: Final Report Submission and Presentation

- **Final Report**: The project report should contain a title page, abstract, introduction, problem statement, objectives, methodology, results, discussion, conclusions, future scope, references, and appendices.
- **Presentation**: Students will deliver a final presentation to a panel of evaluators, showcasing their work, findings, or product.
- **Evaluation**: Based on the final report and presentation, students will be awarded marks in accordance with the evaluation rubrics.

6. Collaboration and Mentorship

For **Research Projects**, the mentorship will involve both:

- **External Mentor**: An academic expert outside the institution, preferably from a reputed university or research institute.
- **Internal Mentor**: A faculty member from the student's department to provide academic and administrative guidance.

For Industrial Projects:

• External mentorship will come from industry professionals, preferably from the partnering company.

For Start-up Projects:

• External mentorship will involve experienced entrepreneurs, start-up founders, or investors.

Mentors will:

- Provide critical inputs on the technical, business, or research aspects of the project.
- Offer feedback and advice during each phase of the project.

7. NEP 2020 Guidelines

The project structure is designed to ensure interdisciplinary learning and foster entrepreneurial and research innovation, in line with the **NEP 2020** guidelines:

- **Interdisciplinary Approach**: Students are encouraged to explore projects that bridge different fields of study.
- **Flexibility**: Students have the flexibility to choose between industrial, research, or start-up projects.
- **Experiential Learning**: Real-world problem-solving and hands-on project work are at the core of this initiative.
- **Collaboration**: The integration of external mentors ensures industry and academic collaboration.

8. Documentation and Submission Requirements

Students are required to:

- Submit their proposal, mid-term report, final report, and any supporting documents via the **Learning Management System (LMS)**.
- Maintain detailed project logs and weekly reports.