SCHOOL OF ENGINEERING AND TECHNOLOGY

Programme Handbook (Programme Structure and Evaluation Scheme)

> B. Tech CSE (Specialization in Cybersecurity) Programme Code: 41

FOUR YEAR UNDERGRADUATE PROGRAMME (with effect from 2024-25 session)

Approved in the 34th Meeting of Academic Council Held on 29 June 2024

TABLE OF CONTENTS

Preface1
Categories of Courses
University Vision and Mission
About the School
School Vision and Mission
About the Programme
Programme Educational Objectives (PEO)
Programme Outcomes (PO)
PROGRAMME SPECIFIC OUTCOMES (PSO's)9
Career Avenues
Prospective Companies
Duration
Eligibility Criteria for Award of Degree
Student's Structured Learning Experience
Evaluation Scheme (Theory Courses):
II. Evaluation Scheme (Laboratory/Practical Courses):
Feedback and Continuous Improvement Mechanisms:19
Academic Integrity and Ethics:
Program Structure
Syllabus

Preface

The K.R. Mangalam Group has made a name for itself in the field of education. Over a period of time, the various educational entities of the group have converged into a fully functional corporate academy. Resources at KRM have been continuously upgraded to optimize opportunities for the students. Our students are groomed in a truly inter-disciplinary environment wherein they develop integrative skills through interaction with students from engineering, management, journalism and media study streams. The K.R. Mangalam story goes back to the chain of schools that offered an alternative option of world-class education, pitching itself against the established elite schools, which had enjoyed a position of monopoly till then. Having blazed a new trail in school education, the focus of the group was aimed at higher education. With the mushrooming of institutions of Higher Education in the National Capital Region, the university considered it very important that students take informed decisions and pursue career objectives in an institution, where the concept of education has evolved as a natural process.

K.R. Mangalam University was founded in the year 2013 by Mangalam Edu Gate, a company incorporated under Section 25 of the Companies Act, 1956.

Uniqueness of KRMU

i. Enduring legacy of providing education to high achievers who demonstrate leadership in diverse fields.

ii. Protective and nurturing environment for teaching, research, creativity, scholarship, social and economic justice.

Education Objectives

i. To impart undergraduate, post-graduate and Doctoral education in identified areas of higher education.

ii. To undertake research programs with industrial interface.

iii. To integrate its growth with the global needs and expectations of the major stake holders through teaching, research, exchange & collaborative programs with foreign, Indian Universities/Institutions and MNCs.

iv. To act as a nodal center for transfer of technology to the industry.

v. To provide job oriented professional education to the student community with particular focus on Haryana.

Categories of Courses

Major: The major would provide the opportunity for a student to pursue in-depth study of a particular subject or discipline.

Industry Driven Courses (IDC): The purpose of our industry-driven courses is to align academic learning with industry needs. Through engagement with industry experts, students receive hands-on training and real-world experience throughout the semester, ensuring they develop the practical skills needed to become industry-ready upon graduation.

Multidisciplinary (Open Elective): These courses are intended to broaden the intellectual experience and form part of liberal arts and science education. These introductory-level courses may be related to any of the broad disciplines given below:

- Natural and Physical Sciences
- Mathematics, Statistics, and Computer Applications
- Library, Information, and Media Sciences
- Commerce and Management
- Humanities and Social Sciences

A diverse array of Open Elective Courses, distributed across different semesters and aligned with the aforementioned categories, is offered to the students. These courses enable students to expand their perspectives and gain a holistic understanding of various disciplines. Students can choose courses based on their areas of interest.

Ability Enhancement Course (AEC): Students are required to achieve competency in a Modern Indian Language (MIL) and in the English language with special emphasis on language and communication skills. The courses aim at enabling the students to acquire and demonstrate the core linguistic skills, including critical reading and expository and academic writing skills, that help students articulate their arguments and present their thinking clearly and coherently and recognize the importance of language as a mediator of knowledge and identity.

Skills Enhancement Courses (SEC): These courses are aimed at imparting practical skills, hands-on training, soft skills, etc., to enhance the employability of students.

Value-Added Course (VAC): The Value-Added Courses (VAC) are aimed at inculcating Humanistic, Ethical, Constitutional and Universal human values of truth, righteous conduct, peace, love, non-violence, scientific and technological advancements, global citizenship values and life-skills falling under below given categories:

• Understanding India

- Environmental Science/Education
- Digital and Technological Solutions
- Health & Wellness, Yoga education, Sports, and Fitness

Discipline Specific Electives (DSE): The purpose of offering discipline-specific electives is to provide students with the flexibility to specialize in emerging and high-demand domains such as Full Stack Development, Cloud Computing, AI & ML, and Cyber Security. These electives are designed to equip students with advanced knowledge and skills in their chosen fields, ensuring they are well-prepared for specialized roles and industry demands in these cutting-edge areas.

Industry project/Research Project: Students choosing a 4-Year Bachelor's degree are required to take up Industry/research projects. The purpose of our full-time, 6-month industry project for final-year students is to provide them with practical exposure by working on real-world industry projects.

University Vision and Mission

3.1 Vision

K.R. Mangalam University aspires to become an internationally recognized institution of higher learning through excellence in inter-disciplinary education, research, and innovation, preparing socially responsible life-long learners contributing to nation building.

3.2 Mission

> Foster employability and entrepreneurship through futuristic curriculum and progressive

pedagogy with cutting-edge technology

- Instill notion of lifelong learning through stimulating research, Outcomes-based education, and innovative thinking
- Integrate global needs and expectations through collaborative programs with premier universities, research centers, industries, and professional bodies.
- Enhance leadership qualities among the youth having understanding of ethical values and environmental realities

About the School

Since its establishment in 2013, the School of Engineering and Technology at K.R. Mangalam University has rapidly developed into a hub of innovation, quality education, and skill development. Our focus is on delivering a transformative educational experience that equips students with advanced technical knowledge while fostering creativity and critical thinking. With state-of-the-art infrastructure, modern laboratories, and a distinguished faculty, we provide an environment that nurtures both academic and professional excellence.

Our school offers a comprehensive range of programs, including undergraduate (B.Tech, BCA, B.Sc), postgraduate (M.Tech, MCA), and doctoral studies across key engineering disciplines. We are proud to offer specialized B.Tech programs in high-demand fields such as Artificial Intelligence & Machine Learning, Data Science, Cyber Security, Full Stack Development, and UI/UX Development. These programs are designed to meet the evolving needs of the industry, ensuring that students are equipped with the skills and knowledge required to succeed in the modern workforce.

Our curriculum is grounded in best practices from leading global institutions and incorporates insights from the Open-Source Society University. It emphasizes interdisciplinary learning, problem-solving, and innovative teaching methodologies. This approach not only enhances students' technical

competencies but also develops their ability to think critically and work collaboratively across diverse domains.

Industry integration is a key component of our educational model. We collaborate with renowned organizations such as IBM, Samatrix, Xebia, EC Council, and ImaginXP to provide students with practical, real-world experience through internships, projects, and workshops. These partnerships ensure that our students are well-prepared to meet industry demands. Additionally, we offer elective courses in areas such as AI, Cloud Computing, Cyber Security, and Full Stack Development, allowing students to tailor their learning experience to align with their career goals.

We are also committed to fostering innovation and entrepreneurship. Our **Entrepreneurship and Incubation Center** and initiatives like 'MindBenders,' 'Hack-KRMU,' and participation in the **Smart India Hackathon** inspire students to develop forward-thinking solutions and entrepreneurial ventures. With cutting-edge computing facilities, advanced research opportunities, and a focus on practical application, the School of Engineering and Technology ensures that its graduates are well-prepared to excel in their careers. Our alumni have made significant contributions across various sectors, reflecting the high standards of education they receive.

School Vision and Mission

Vision

To excel in scientific and technical education through integrated teaching, research, and innovation.

Mission

- Creating a unique and innovative learning experience to enhance quality in the domain of Engineering & Technology.
- **Promoting** Curricular, co-curricular and extracurricular activities that support overall personality development and lifelong learning, emphasizing character building and ethical behavior.
- **Focusing** on employability through research, innovation and entrepreneurial mindset development.
- Enhancing collaborations with National and International organizations and institutions to develop cross-cultural understanding to adapt and thrive in the 21st century.

About the Programme

4.1 Definitions

Programme Outcomes (POs)

Programme Outcomes are statements that describe what the students are expected to know and would be able to do upon the graduation. These relate to the skills, knowledge, and behaviour that students acquire through the programme.

Programme Specific Outcomes (PSOs)

Programme Specific Outcomes define what the students should be able to do at the time of graduation and they are programme specific. There are two to four PSOs for a programme

Programme Educational Objectives (PEOs)

Programme Educational Objectives of a degree programme are the statements that describe the expected achievements of graduates in their career, and what the graduates are expected to perform and achieve during the first few years after graduation.

> Credit

Credit refers to a unit that measures the amount of academic work required for a course. It typically reflects the number of instructional hours per week. For theory courses, one credit is equivalent to 14-15 hours of classroom instruction over a semester. For practical courses, such as workshops, labs, or tutorials, one credit is equivalent to 28-30 hours of instructional or hands-on work over a semester.

Programme Educational Objectives (PEO)

PEO1: Successful professionals in industry, government, academia, research, entrepreneurial pursuits and consulting firms.

PEO2: Able to apply their knowledge of computer science & engineering principles to solve societal problems by exhibiting a strong foundation in both theoretical and practical aspects of the field.

PEO3: Dedicated to upholding professional ethics and social responsibilities, with a strong commitment to advancing sustainability goals.

PEO4: Demonstrating strong leadership skills and a proven ability to collaborate effectively in diverse, multidisciplinary teams to successfully achieve project objectives.

Programme Outcomes (PO)

Engineering Graduates will be able to:

PO1. Core Competencies in Engineering: Graduates will possess a strong foundation in engineering knowledge, critical problem analysis, and solution design, equipped with skills for conducting thorough investigations to solve complex challenges.

PO2. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO3. Societal and Environmental Responsibility

Apply contextual knowledge to evaluate societal, health, safety, legal, and cultural issues, while understanding the impact of engineering solutions on the environment and advocating for sustainable development.

PO4. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PO5. Effective Communication and Team Collaboration

Excel in both individual and team roles within diverse and multidisciplinary settings, while communicating complex engineering concepts clearly through effective reports, presentations, and interactions.

PO6. Project management

Apply engineering and management principles to lead and manage projects effectively in computer science and engineering contexts.

PO7. Life-long learning: Embrace and actively pursue continuous learning to stay current with technological advancements and evolving practices in computer science and engineering.

PROGRAMME SPECIFIC OUTCOMES (PSO's)

PSO1: Understanding the concepts, theories, tools, techniques, and methodologies of Cyber Security.

PSO2: Applying Cyber Security concepts, techniques, methodologies & principles to protect systems and networks from threats.

PSO3: Analyzing security context, threats, vulnerabilities, and incidents to identify risks.

PSO4: Evaluating and implementing security measures and solutions.

PSO5: Designing and developing innovative security strategies to address complex cyber threats.

Career Avenues

Diverse career avenues available to graduates of the B. Tech CSE with specialization in Cybersecurity programme:

Cybersecurity Analyst: In an era of heightened cybersecurity threats, organizations require experts who can protect their systems and data. Cybersecurity analysts identify vulnerabilities, implement security measures, conduct risk assessments, and respond to security incidents to safeguard computer systems and networks.

Security Consultant: Security Consultants advise organizations on how to improve their security posture. They assess existing security measures, design and recommend security solutions, and help implement best practices to protect against cyber threats

Cybersecurity Engineer: Cybersecurity Engineers develop and implement security solutions to protect information systems. They work on creating security infrastructure, developing tools for threat detection, and ensuring the overall security of IT environments.

Malware Analyst: Malware Analysts study and analyse malicious software to understand how it works, how it spreads, and how to defend against it. They reverse-engineer malware, analyse threats, and develop countermeasures to protect systems.

Ethical Hacking Instructor/Trainer: Ethical Hacking Instructors or Trainers educate others in cybersecurity practices. They develop training materials, conduct workshops, and teach ethical hacking techniques and methodologies to aspiring cybersecurity professionals.

Forensic Computer Analyst: Forensic Computer Analysts investigate cybercrimes by collecting, preserving, and analysing digital evidence. They work on legal cases, recover data from compromised systems, and provide expert testimony in court.

Network Security Engineer: Network Security Engineers focus on protecting network infrastructures from cyber threats. They design and implement network security solutions, manage firewalls and intrusion detection systems, and ensure network security compliance.

Cryptographic Engineer: Cryptographic Engineers develop and implement cryptographic systems to secure data and communications. They work on encryption algorithms, secure key management practices, and cryptographic protocols for protecting sensitive information

Security Researcher: Security Researchers investigate new vulnerabilities and emerging threats. They conduct original research, develop new security technologies, and publish findings to advance the field of cybersecurity.

Digital Forensics Expert: Digital Forensics Experts analyse electronic evidence in criminal investigations. They collect, preserve, and examine digital evidence from devices to support legal cases and investigate security breaches. Research and Development: Graduates can pursue careers in research and development, working on innovative projects, exploring new technologies, and pushing the boundaries of computer science and cybersecurity fields. This can involve academic research, industry research labs, or research and development departments within companies.

Prospective Companies

- Symantec Corp.
- Quick Heal Technologies
- Microsoft
- IBM
- RSA
- McAfee
- AVG Technologies
- Valency Networks
- Alten Calsoft Labs
- Palo Alto Networks
- Deloitte Consulting
- KPMG
- Ernst & Young

Duration

4 Years (8 Semesters) - Full-Time Program

Eligibility Criteria for Award of Degree

Students must successfully complete the minimum required credits of 170 to be eligible for award of degree.

Student's Structured Learning Experience

a. Education Philosophy and Purpose:

Learn to Earn a Living: At KRMU we believe in equipping students with the skills, knowledge, and qualifications necessary to succeed in the job market and achieve financial stability. All the programmes are tailored to meet industry demands, preparing students to enter specific careers and contributing to economic development.

Learn to Live: The university believes in the holistic development of learners, fostering sensitivity towards society, and promoting a social and emotional understanding of the world. Our aim is to nurture well-rounded individuals who can contribute meaningfully to society, lead fulfilling lives, and engage with the complexities of the human experience.

b. University Education Objective

Focus on Employability and Entrepreneurship through Holistic Education using Bloom's Taxonomy. By targeting all levels of Bloom's Taxonomy—remembering, understanding, applying, analysing, evaluating, and creating—students are equipped with the knowledge, skills, and attitudes necessary for the workforce and entrepreneurial success. At KRMU we emphasize on learners critical thinking, problem-solving, and innovation, ensuring application of theoretical knowledge in practical settings. This approach nurtures adaptability, creativity, and ethical decision-making, enabling graduates to excel in diverse professional environments and to innovate in entrepreneurial endeavours, contributing to economic growth and societal well-being.

c. Importance of Structured Learning Experiences:

A structured learning experience (SLE) is crucial for effective education as it provides a clear and organized framework for acquiring knowledge and skills. By following a well-defined curriculum, teaching-learning methods and assessment strategies, learners can build on prior knowledge systematically, ensuring that foundational concepts are understood before moving on to more complex topics. This approach not only enhances comprehension but also fosters critical thinking by allowing learners to connect ideas and apply them in various contexts. Moreover, a structured learning experience helps in setting clear goals and benchmarks, enabling both educators and students to track progress and make necessary adjustments. Ultimately, it creates a conducive environment for sustained intellectual growth, encouraging learners to achieve their full potential.

At K.R. Mangalam University SLE is designed as rigorous activities that are integrated into the curriculum and provide students with opportunities for learning in two parts:

Inside the Classroom:

Our educational approach within the classroom is designed to foster **cognitive development** and enhance **student-centric learning**. We prioritize active engagement and deep understanding by employing a variety of methods, tools, and techniques. These include **problem-based learning, case studies, interactive discussions,** and **technology-enhanced learning platforms**. Our faculty focuses on developing critical thinking, analytical reasoning, and problem-solving abilities, ensuring students achieve well-defined **cognitive outcomes**. Additionally, we integrate the use of **modern teaching tools**, such as Learning Management Systems (LMS), virtual labs, and multimedia resources, to enhance the learning experience and accommodate diverse learning styles. This comprehensive approach not only promotes academic excellence but also nurtures independent learning and lifelong intellectual curiosity.

Outside the Classroom:

Beyond the classroom, our focus shifts to developing students' **people skills** and **psychomotor skills** through hands-on experiences in **industry, community, and laboratory settings**. We encourage participation in internships, industrial visits, community engagement projects, and research opportunities, which allow students to apply theoretical knowledge to real-world challenges. These activities build essential interpersonal skills such as **teamwork, leadership, communication**, and **professional networking**. Simultaneously, students engage in **lab-based learning** and technical workshops that refine their psychomotor abilities, including precision, technical expertise, and problem-solving under practical conditions. Through these outside-the-classroom experiences, students gain a holistic skill set that prepares them to excel in both professional and societal contexts, aligning their education with real-world expectations and industry needs.

d. Educational Planning and Execution

The B.Tech in Computer Science & Engineering (CSE) with Specialization in Cyber Security at K.R. Mangalam University is designed to foster a holistic educational experience, integrating both theoretical knowledge and practical skills. The program offers students a structured path from entry to exit, ensuring they develop technical expertise, problem-solving skills, and professional competencies.

Entry Phase

Upon entering the B.Tech CSE with specialization in Cybersecurity program, students are introduced to the foundational concepts of engineering mathematics, physics/chemistry, and

programming. This phase is designed to strengthen their understanding of core scientific and technical principles. Courses such as Engineering Calculus, Fundamentals of Computer Programming using Python, and Basics of Electrical & Electronics Engineering provide a strong foundation. Students also engage in hands-on laboratory sessions to complement theoretical learning, which helps them connect classroom knowledge with real-world applications.

Orientation Program: The university conducts a **one-day orientation program** for first-year students to familiarize them with the university's environment and key aspects. During the program, students are introduced to the university's highlights, important procedures, key functionaries, and the code of conduct. This orientation serves to ensure that students are well-informed and prepared for a smooth transition into university life.

In the first year, students are exposed to critical problem-solving approaches, basic programming, and ethics in engineering, laying the groundwork for their technical and professional growth.

Induction program: The School organizes a **5-day induction program** for first-year students, aimed at providing them with a comprehensive understanding of the school's various aspects. During the program, students are introduced to learning resources, facilities, and opportunities available to them, along with the rules and regulations governing academic and campus life. The induction also includes faculty introductions, guidelines on academic conduct, and detailed information about examination and evaluation methods, ensuring students are well-prepared for their academic journey.

Core Learning

As students advance through the program, they delve deeper into core computer science subjects such as Data Structures, Algorithms, Object-Oriented Programming (C++), Operating Systems, and Database Management Systems. This phase emphasizes both theoretical concepts and their practical application through lab work. The learning is enhanced through exposure to industry-standard tools and techniques, including programming languages like Java and Python, and systems for data management and networking.

The structured academic schedule, with a well-distributed credit system over eight semesters, ensures students acquire deep technical knowledge and skills in software development, systems design, and computing technologies. The Summer Internship Programs and Minor

Projects in the curriculum allow students to apply their learning in real-life projects, facilitating experiential learning.

Summer Internships: School offers 2-credit summer internships spanning 6 weeks, where students are encouraged to pursue internships in startups, industries, or premier institutions such as IITs, NITs, and IIITs. In addition, students have the opportunity to earn global certifications during this period. The School also organizes in-house summer schools in collaboration with industry partners, providing further avenues for students to gain hands-on experience and enhance their professional skills. These initiatives are designed to offer students practical exposure, helping them develop industry-relevant expertise.

Value Added Courses: The School offers a range of 2-credit Value Added Courses (VACs) designed to equip students with industry-relevant skills. These courses aim to bridge the gap between academic knowledge and practical application by providing hands-on training that aligns with current industry demands, ensuring that students are well-prepared for professional challenges.

Skill Development

Throughout the program, there is a significant emphasis on developing practical skills and ensuring students are industry-ready. Courses on Artificial Intelligence, Machine Learning, Cloud Computing, and Cybersecurity provide students with cutting-edge knowledge in emerging fields. Value-Added Courses (VAC) like AWS Cloud Fundamentals, Software Testing, Cyber Security, and Design Thinking & Innovation help bridge the gap between academic learning and industry demands.

Collaborative projects, internships, and industry-based certification courses (offered through partnerships with organizations like IBM and Samatrix) further develop students' practical and professional skills, preparing them to thrive in a dynamic workplace.

Capstone and Exit Phase

In the final semesters, students undertake discipline-specific electives and capstone projects. These projects integrate the knowledge and skills they have acquired over the course of their studies. Electives such as Natural Language Processing, Generative AI, and Blockchain Technologies offer students the flexibility to specialize in areas of their interest.

The final Industrial Project or R&D Project in the eighth semester is a full-time engagement where students work on live industry problems, research projects, or start-up ideas. This

project phase, combined with career readiness boot camps and placement preparation activities, ensures that students are equipped to enter the workforce with both technical competence and professional acumen.

Co-Curricular and Extra-Curricular Activities

Students are encouraged to participate in various clubs, societies, and extra-curricular activities. Engagement in activities such as hackathons, coding competitions, and leadership roles in clubs fosters teamwork, leadership, and creativity. These activities complement academic learning, contributing to the students' holistic development.

Community Connect

Aligning with the NEP 2020's vision of social responsibility, the B.Tech CSE with specialization in Cybersecurity programme includes community engagement through activities like Extension Projects and social service initiatives. Students work on community projects and participate in programs aimed at addressing local and national challenges, promoting civic responsibility, and developing empathy towards society.

Ethics and Professional Values

The program places a strong emphasis on ethics and professionalism. Students are taught to incorporate ethical considerations in technological development and decision-making processes. This prepares them to not only be skilled engineers but also responsible professionals who contribute positively to society.

Career Counselling and Entrepreneurship

The university offers comprehensive **career counselling services**, providing students with expert guidance on **job placements**, **internships**, and **skill development** to help them effectively navigate their career paths. In addition, the university's **incubation center** plays a pivotal role in nurturing **entrepreneurial and leadership skills**, empowering students to explore innovative ideas and launch their own ventures. These initiatives are designed to equip students with the tools and resources necessary for professional success and entrepreneurial growth.

Course Registration

• Every student has to register at the beginning of each semester for the courses offered in the given semester. Major courses are registered centrally for the students. However, for other multidisciplinary courses (DSE, VAC, OE) the students have to register by themselves through ERP.

e. Student Support Services

Mentor-Mentee: At K.R. Mangalam University, the **Mentor-Mentee Program** plays a crucial role in fostering academic and personal growth. Each student is assigned a faculty mentor who serves as a guide throughout their academic journey. This program ensures continuous interaction, where mentors assist students with academic planning, help in resolving personal issues, and provide career guidance. The mentor-mentee relationship transcends the classroom and often involves personal development, professional growth, and overall well-being. The program aims to nurture a supportive environment that enhances the learning experience and helps students reach their full potential.

Counselling and Wellness Services: The university places a strong emphasis on the mental and emotional well-being of its students through its Counselling and Wellness Services. A dedicated team of trained counselors provides personalized sessions, workshops, and wellness programs to address the mental health needs of the student community. These services focus on holistic well-being, including stress management, emotional resilience, and coping strategies. Regular wellness programs, meditation sessions, and mental health awareness campaigns are conducted to promote a balanced lifestyle and ensure that students can focus on their studies while maintaining their emotional health.

f. Evaluation of Learning:

At K.R. Mangalam University, assessment and evaluation are integral components of the teaching-learning process, designed to ensure continuous academic progress and holistic development of students. The university follows a Learning Outcome-Based Framework (LOCF), where assessments are aligned with the specific learning outcomes of each program.

A variety of assessment methods, including assignments, presentations, quizzes, practical examinations, and project work, are used to gauge students' understanding. The examination system is 100% automated, ensuring timely and transparent evaluation processes. Results are processed efficiently, typically within 13 days, and complaints related to evaluation are minimal, reflecting the university's commitment to maintaining a high standard of academic integrity. This robust system of continuous assessment and feedback fosters a culture of academic excellence and skill development among students.

Evaluation Scheme (Theory Courses):

Evaluation Components	Weightage
A. Internal Assessments:	
1. Continuous Assessment (30 Marks)	
(Minimum 5 components to be used and to be evenly spaced)	
Project/ Quizzes/Test/ Assignments and Essays/ Presentations/ Class	
Participation/ Case Studies/ Reflective Journals	30 Marks
2. Mid Term Exam	20 Marks
B. External Assessments:	50 Marks
End term Examination	
Total	100 Marks

II. Evaluation Scheme (Laboratory/Practical Courses):

Evaluation Components	Weightage
Internal Assessments-	
1. Conduct of Experiment	10 Marks
2. Lab Records	10 Marks
3. Lab Participation	10 Marks
4. Lab Project	20 Marks
External Assessments-	50 Marks
End term Practical Exam and Viva Voce	
Tota	l 100 Marks

Feedback and Continuous Improvement Mechanisms:

K.R. Mangalam University is deeply committed to academic excellence through a robust feedback and continuous improvement system. This system is designed to gather comprehensive input from a diverse range of stakeholders, including students, faculty, alumni, employers, and academic peers. Feedback is systematically collected and thoroughly analyzed to identify areas for enhancement in curricula, teaching methodologies, and academic processes. Based on the insights gained, actionable measures are formulated and communicated to the appropriate bodies for timely implementation.

This structured feedback mechanism ensures that the university's programs remain aligned with **industry trends and societal needs**, providing students with a cutting-edge education that prepares them for real-world challenges. Moreover, the university demonstrates its commitment to continuous improvement through **regular curriculum updates** and the integration of **innovative teaching strategies**, fostering an environment where both faculty and students can grow and excel. By maintaining this cycle of feedback and improvement, K.R. Mangalam University ensures the continuous advancement of its academic offerings and the overall learning experience.

Academic Integrity and Ethics:

K.R. Mangalam University upholds the highest standards of academic integrity and ethics as a core value of its educational philosophy. The university implements a zero-tolerance policy towards academic misconduct, including plagiarism and other unethical practices. To ensure

transparency and honesty in academic work, plagiarism detection software like Drillbit is used to maintain the originality of student submissions and research outputs. Students and faculty are regularly sensitized on the importance of ethical behavior through workshops, seminars, and classroom discussions. The university also integrates ethics and professional values into its curriculum across various disciplines, ensuring that graduates not only excel academically but also demonstrate integrity and responsibility in their professional and personal lives.

Program Structure

Program Name	B.Tech CSE (Specialization in Cybersecurity)
Total Credits	170
Total Semesters	8

Credit Distribution Summary

Program Name	Ι	II	III	IV	V	VI	VII	VIII	Total Credits
B.Tech CSE (Cyber)	20	23	27	24	25	25	14	12	170

SEMESTER I

S.N	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major-1	ENMA101	Engineering Calculus	3	1	0	4
2	IDC-1	ENSP101	Clean Coding with Python	4	0	0	4
3	Major-2	ENPH101/ ENCH101	Engineering Physics / Engineering Chemistry	3	1	-	4
4	IDC-2	ENSP151	Clean Coding with Python Lab	0	0	2	1

5	VAC-1	VAC-151	Environmental Studies & Disaster Management	2	-	-	2
6	SEC-1	SEC033	Engineering Drawing & Workshop Lab	-	-	4	2
7	Major-3	ENPH151/ ENCH151	Engineering Physics lab / Engineering Chemistry lab	-	-	2	1
8	SEC-2	SEC068	Cybersecurity Essentials	2	-	-	2
		14	2	8	20		

SEMESTER II

S.N	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major-4	ENMA102	Linear Algebra and Ordinary Differential Equations	3	1	-	4
2	Major-5	ENCS102	Object Oriented Programming using C++	3	1	-	4
3	Major-6	ENCH101/ ENPH101	Engineering Chemistry / Engineering Physics	3	1	-	4
4	IDC-3	ENSP156	Network Defense Essentials (NDE) Lab	-	-	4	2

K.R. MANGALAM UNIVERSITY

5	Major-7	ENCH151/ ENPH151	Engineering Chemistry Lab/Engineering Physics lab	-	-	2	1
6	Major-8	ENCS152	Object Oriented Programming using C++ Lab	-	-	2	1
7	Open Elective-1		Students can choose one of the electives from the pool of open electives of University	3	-	-	3
8	Proj-1	ENSI152	Minor Project-I	-	-	-	2
9	SEC-3		Applied Generative AI: Practical Tools and Techniques	-	-	4	2
		12	3	12	23		

SEMESTER III

S.N	Category	Code	COURSE TITLE	L	Т	Р	С
1	Major-9	ENCS203	Discrete Mathematics	3	1	-	4
2	Major-10	ENCS205	Data Structures	3	1	I	4
3	Major-11	ENCS201	Java Programming	4	-	-	4
4	SEC-4	SEC047	Network Defense Essentials (NDE) Certification	2	-	-	2
5	Major-12	ENCS253	Data Structures Lab	-	-	2	1

K.R. MANGALAM UNIVERSITY

6	Major-13	ENCS251	Java Programming Lab	-	-	2	1
7	Open Elective-II		Students can choose one of the electives from the pool of open electives of University	3	0	0	3
8	VAC-2		Students can choose any one elective from the pool of the VAC Courses offered by School	2	-	-	2
9	AEC-1	AEC006	Verbal Ability	3	-	-	3
10	INT-1	ENSI251	Summer Internship-I	-	-	-	2
11	AUDIT-2		Competitive Coding - I	2	-	I	0
12	CS-1	CS02	Community Service	1	-	-	1
	TOTAL			23	2	4	27

Note:

- For the "Summer Internship," students are required to complete a 6-week internship during the summer break and submit a completion certificate. The evaluation, is based on learning outcomes achieved during the internship, will be conducted in the 3rd semester and will be graded on a scale of 100 marks.
- Students have the option to enroll in one of the Value-Added Courses (hands-on courses) offered at the school level. This elective course will conclude with an end-term examination worth 100 marks.
- Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted

VAC-III

Code	COURSE TITLE	L	Т	Р	С
------	--------------	---	---	---	---

VAC170	Design thinking & Innovations for Engineers	2	-	-	2
VAC171	AWS Cloud Fundamentals	2	-	-	2
VAC172	Web Development with open-source Frameworks	2	-	-	2
VAC173	Google Data Analytics	2	-	-	2
VAC174	Software Testing using Open-Source Frameworks	2	-	-	2
VAC175	Database Management with Open-Source Frameworks	2	-	-	2
VAC176	Cyber Security with Open-source Frameworks	2	-	-	2
VAC 185	Practical Robotics & UAV Application	2	-	-	2
VAC 186	Applied Automotive Engineering: Hands-On Practices and Innovations	2	-	-	2
VAC 187	Practical Research Methodology for Engineers	2	-	-	2

SEMESTER IV

	Category	CODE	Semester IV	L	Т	Р	Credits	
1	Major-14	ENCS202	Analysis and Design of Algorithms	3	1	0	4	
2	Major-15	ENCS204	Database Management Systems	3	1	0	4	
3	IDC-4	ENSP206	Certified Cyber Security Technician (CCT)	4	-	-	4	EC Counc il
4	Major-16	ENCS256	Analysis and Design of Algorithms lab	-	-	2	1	

K.R. MANGALAM UNIVERSITY

5	Major-17	ENCS254	Database Management Systems lab	-	-	2	1	
6	IDC-5	ENSP256	Cyber Security Technician (CCT) Lab	-	-	2	1	EC Counc il
7	Open Elective-III		Students can choose one of the electives from the pool of open electives of University	3	-	I	3	
8	AEC-2	AEC007	Communication & Personality Development	3	-	-	3	
9	Proj-2	ENSI252	Minor Project-II	-	-	-	2	
10	AUDIT-1		Competitive Coding - II	2	-	-	0	
11	CS-2	CS001	Club/Society	1	-	-	1	
			TOTAL	19	2	6	24	

Note:

- For the "Minor Project," students will undergo internal evaluation, which will be graded on a scale of 100 marks.
- Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted

SEMESTER V

S.N	Category	COURSE CODE	E COURSE TITLE		Т	Р	С
1	Major-18	ENCS301	Theory of Computation	3	1	-	4

K.R. MANGALAM UNIVERSITY

2	Major-19	ENCS303	Operating Systems	3	1	-	4
3	SEC-5	SEC048	Cyber Security Technician (CCT) Certification	2	-	-	2
4	Major-20	ENCS307	Cryptography	4	-	-	4
5	Major-21	ENCS309	Fundamentals of Cloud Computing and its Security	4	-	-	4
6	Major-22	ENCS351	Operating Systems Lab	-	-	2	1
7	Major-23	ENCS353	Fundamentals of Cloud Computing and its Security Lab	-	-	2	1
8	AEC-3	AEC08	Airthmetic and Reasoning Skills	3	-	-	3
9	INT-2	ENSI351	Summer Internship-II	-	-	-	2
10	AUDIT-3		Competitive Coding - III	2	-	-	0
			Total	21	2	4	25

Note:

- For the "Summer Internship," students must complete a 6-week internship during the summer and submit a completion certificate. The evaluation will take place during the 3rd semester and will be graded on a scale of 100 marks.
- Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted
- Students can choose one of the following electives:

SEMESTER VI

SN	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major-24	ENCS302	Computer Organization & Architecture	3	1	-	4
2	DSE-1		Discipline Specific Elective-I	4	-	-	4
3	Major-25	ENCS304	Computer Networks	3	1	-	4
4	DSE-2	ENSP312	Introduction to Ethical Hacking*	4	0	0	4
5	DSE-3		Discipline Specific Elective-I Lab	-	-	2	1
6	Major-26	ENCS352	Computer Networks Lab	-	-	2	1
7	DSE-4	ENSP362	Ethical hacking Lab	-	-	2	1
8	Major-27	ENCS356	Introduction to Linux with Bash Scripting Lab	-	-	4	2
9	Proj-3	ENSI352	Minor Project-III	-	-	-	2
10	AUDIT-4		Competitive Coding - IV	2	-	-	0
11	MOOC-1		MOOC in the domain of Cyber Security (Swayam/ NPTEL/AICTE's ELIS)	-	-	-	2
	TOTAL					10	25

*Note: students will undergo training on CEH Certification module from EC Council

• Audit Course: it is zero credit and must pass course. End term exam of 100 marks will be conducted

Discipline Specific Elective-I (Cyber Security)

SN	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	DSE	ENSP301	Secure Coding and Vulnerabilities	4	0	0	4
	DSE	ENSP351	Secure Coding and Vulnerabilities lab	-	-	2	1
2	DSE	ENSP303	Cyber Crime Investigation & Digital Forensics	4	0	0	4
2	DSE	ENSP353	Cyber Crime Investigation & Digital Forensics lab	-	-	2	1
	DSE	ENSP305	AI in Cyber Security	4	0	0	4
3	DSE	ENSP355	AI in Cyber Security Lab	-	-	2	1
4	DSE	ENSP307	Social Media Security	4	0	0	4
	DSE	ENSP357	Social Media Security Lab	-	-	2	1

SEMESTER VII

SN	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	SEC-6	SEC049	EC Council Certified Ethical Hacker (CEH) Certification	2	-	-	2
2	DSE-5		Discipline Specific Elective-II	4	-	-	4
3	DSE-6		Discipline Specific Elective-III Lab	3	1	-	4
4	DSE-7		Discipline Specific Elective II Lab	-	-	2	1
5	DSE-8		Discipline Specific Elective-III Lab	-	-	2	1
6	MOOC-2		Applied Programming and Problem- Solving Skills for Campus Interviews	-	-	-	2

Note:

- Students will undergo a training on CEH Certification module from EC Council
- Students can choose among the following department electives:

	Discipline Specific Elective- II (Cloud Computing)										
	DSE	ENSP401	Computational Services in The Cloud	4	-	1	4				
(1)	DSE	ENSP451	Computational Services in The Cloud Lab	-	-	2	1				
/·· >	DSE	ENSP403	Microsoft Azure Cloud Fundamentals	4	-	1	4				
(11)	DSE	ENSP453	Microsoft Azure Cloud Fundamentals Lab	-	-	2	1				
(:::)	DSE	ENSP405	Storage and Databases on Cloud	4	-	1	4				
(111)	DSE	ENSP455	Storage and Databases on Cloud Lab	-	-	2	1				
	DSE	ENSP407	Application Development and DevOps on Cloud	4	-	1	4				
(iv)	DSE	ENSP457	Application Development and DevOps on Cloud Lab	-	-	2	1				
		Discipline S	pecific Elective - III (Full Stack Developm	ent)							
	DSE	ENSP409	Mobile Application Development using iOS	4	-	-	4				
(1)	DSE	ENSP459	Mobile Application Development using iOS Lab	-	-	2	1				
<i>(</i> '')	DSE	ENSP411	DevOps & Automation	4	-	-	4				
(ii)	DSE	ENSP461	DevOps & Automation Lab	-	-	2	1				
(;;;)	DSE	ENSP413	.Net FRAMEWORK	4	-	-	4				
(iii)	DSE	ENSP463	.Net FRAMEWORK Lab	-	-	2	1				

(iv) DSE ENSP415 New Age P DSE ENSP465 New Age P	New Age Programming languages	4	0	0	4	
	DSE	ENSP465	New Age Programming languages Lab	0	0	2

SEMESTER VIII (EVEN SEMESTER)

Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
Proj-4	ENSI452	Industry Project /Research Project	-	-	-	12
TOTAL						

Note:

• Students are required to undertake a full-time 6 month industry Project

Evaluation will be based on internal assessments, with no end-term exams applicable.

Syllabus

SEMESTER: I

ENGINEERING CALCULUS

Program Name	B. Tech CSE (Specialization in Cyber Security)			
Course Name:	Course Code	L-T-P	Credits	Contact
Engineering Calculus				Hours
	ENMA101	3-1-0	4	40
Type of Course:	Major-1			
Pre-requisite(s): Basics understanding of Calculus and Algebra at higher secondary level				

Course Perspective. This course is to familiarize students with techniques in calculus, multivariate calculus, vector calculus, and their applications. It aims to equip students with standard concepts and tools from intermediate to advanced levels that will enable them to tackle more advanced mathematical and engineering problems relevant to their disciplines. The course is divided into 4 modules:

- a) Differential Calculus- I
- b) Multivariable Calculus (Partial Differentiation and applications)
- c) Multivariable Calculus-II (Integration)
- d) Vector Calculus

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding fundamental concepts of differential calculus
CO 2	Applying concepts of multivariable calculus
CO 3	Solving integration problems in multiple dimensions
CO 4	Analyzing vector calculus to understand physical and geometrical problems

Course Outline:

Unit Number: 1	Title: Differential Calculus- I	No. of hours: 10			
Content:					
 Introduction to limits, continuity, and differentiability. 					
 Rolle's Theorem, Lagrange's Mean value theorem with geometrical interpretation and applications. 					
 Cauchy's Mean value Theorem. 					
 Taylor's Series. 	 Taylor's Series. 				
 Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves 					
(Cartesian coordin	(Cartesian coordinates).				
 Successive Differentiation, Leibnitz theorem and its application. 					
 Curve tracing in Cartesian and Polar coordinates. 					
 Infinite series: Tests for convergence of series (Comparison, Ratio, Root test) 					
 Alternating series 					
Absolute convergence					
 Conditional conver 	rgence.				
Unit Number: 2	Title: Multivariable Calculus (Partial	No. of hours: 10			
	Differentiation and applications)				
Content:					
 Partial derivatives. 					
 Total derivative. 	 Total derivative. 				
 Euler's Theorem for homogeneous functions. 					
 Taylor and Maclaurin theorems for functions of one and two variables. 					
 Maxima and Minima of functions of several variables. 					
 Lagrange Method of Multipliers. 					
Unit Number: 3	Title: Multivariable Calculus-II (Integration)	No. of hours: 10			
Content:					
 Area between two curves; Polar Coordinates. 					
 Volumes by slicing, Washer and Shell Methods. 					
 Length of a plane curve. 					
 Areas of Surfaces of Revolution. 					
 Evaluation of Double Integrals (Cartesian and polar coordinates). 					

- Change of order of integration (Cartesian form).
- Evaluation of Triple Integrals: Change of variables (Cartesian to polar for double, Cartesian to Spherical and Cylindrical polar for triple integrals).
- Applications: Areas (by double integrals) and volumes (by double and triple integrals).
- Center of mass and center of gravity (Constant and variable densities).

Unit Number: 4	Title: Vector Calculus	No. of hours: 10
Content:		

- Vector differentiation: Gradient, Curl, and Divergence with physical interpretation.
- Directional derivatives, Tangent and Normal planes.
- Vector Integration: Line integral, Surface integral, Volume integral.
- Applications to work done by the force
- Gauss's Divergence theorem, Green's theorem, Stoke's theorem (without proof) and applications.

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Use PPTs to explain key calculus concepts.
- 2. Conceptual Understanding: Cover theorems (Rolle's, Taylor's, etc.) and solve problems.
- 3. Problem-Solving Sessions: In-class exercises on differential and multivariable calculus.
- 4. **Theory Assignments**: Solve theoretical problems, reviewed in class.
- 5. Group Work: Collaborative problem-solving for real-world engineering tasks.
- 6. Case Studies: Discuss real-world applications of calculus concepts.
- 7. Continuous Feedback: In-class quizzes and feedback sessions.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Apply calculus techniques in take-home assignments.
- 2. Question Bank: Practice with model papers and self-assessment.
- 3. **Online Forums**: Discuss and collaborate on calculus problems online.
- 4. Self-Study: Research and apply calculus to real-world scenarios.
- 5. Collaborative Projects: Group work on applying multivariable and vector calculus.

Textbooks:

• G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9th Edition, Pearson, Reprint, 2002.

Reference Books:

- B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill, 2008.
- B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.

- R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House, 2002.
- E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2005.
- Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill, Sixth Edition.

Additional Readings:

1. Link to NPTEL course contents: <u>https://onlinecourses.nptel.ac.in/noc18_ma05/preview</u>

2. Link to topics related to course: <u>https://www.whitman.edu/mathematics/calculus_online/chapter14.html</u>

Programme Name:	B. Tech CSE with Specialization in Cyber Security			
Course Name:	Course Code	ІТР	Creadita	Contact
Clean Coding with Python	Course Code		Creuits	Hours
	ENSP101	4-0-0	4	46
Type of Course:	IDC-1			
Pre-requisite(s), if any: Working Knowl	edge of any programming	g language	like C will	be an added
advantage				

CLEAN CODING WITH PYTHON

Course Perspective. "Clean Coding with Python" is designed to teach students the principles and practices of writing clean, maintainable, and efficient Python code. This course covers essential coding standards, best practices, and design patterns that promote readability, simplicity, and scalability in software development.

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding the fundamental concepts of Python programming, including basic syntax, control structures, and data types.
CO 2	Applying Python data structures and functions to solve problems using lists, tuples, sets, and dictionaries, including the use of functional programming techniques.

CO 3	Implementing error handling, file operations, and advanced Python features such as decorators, generators, and modules for efficient programming.
CO 4	Utilizing Python for advanced tasks like web scraping, working with external file formats (Excel, CSV), GUI development, and database integration.

Course Outline:

Г

Unit Number: 1	Title: Introduction to Python	No. of hours: 8		
Content:				
Python Introduction and	Setup: Command Line Basics, Installation of P	ython. Text Editor (VS Code,		
PyCharm, Anaconda)				
Python basics and control	structures: Python data types, Numbers, Variable	s, getting input from the		
user, Operators, S	statements (If, else, elif), Nested stateme	ents, Loops and loop control		
statements (Break, continue	and pass), Strings (Indexing, slicing and formattin	g).		
Unit Number: 2	Title: Python Data StructureNo. of hours: 10			
Content:				
Python Data Structures:	Lists, Tuples, Sets, Dictionaries. Methods an	d Functions: Introduction to		
functions, def keyword, *arg	s and **kwargs in python, exercise on			
functions, Lambda expressio	ons, Map and Filter functions.			
Unit Number: 3Title: Python Decorators and generatorsNo. of hours: 10				
Content:				
Modules and Package: Inst	allation using pip			
Errors and Exception Handling: Errors, Exceptions, Try and Except Statement,				
Catching Specific Exception, Try with else, Finally, Keyword, Raising an exception.				
File Handling using Python.				
Unit Number: 4	Title: Python advanced	No of hours: 10		
	modules	110. 01 HUU15. IV		

Content:					
Python advanced modules: I	Datetime	module, Math and Ra	andom module, OS m	nodule	
Regular Expressions: re mod	Regular Expressions: re module, Web Scraping using Python: Web Scraping libraries and				
practical implementation, working with images using python					
Unit	Title:	Working with Exc	el sheets and CSV	No. of hours: 8	
Number: 5	files				
Content :					

Python GUI programming: Tkinter, Adding Widgets, Buttons etc.SQL queries (DDL, DML, DCL, TCL) – Joins, Sub-Queries, Constraints and Inbuilt functions (Date, String, Math)Database handling in python using MySQL db, Fetching and Inserting data using MySQL db.

Learning Experiences

Inside Classroom Learning:

- 1. Interactive Coding Exercises: Students practice writing Python programs in real-time with in-class coding challenges related to loops, data types, and control structures (Unit 1).
- 2. Live Code Reviews: Students submit code for peer review, receiving constructive feedback on maintaining clean code principles (CO 2).
- 3. Hands-on File Handling Tasks: Students work on file manipulation tasks, exploring real-world scenarios using CSV, JSON, and regular expressions (CO 3, Unit 3).
- 4. Mini-Projects: Small projects like building a basic text-based game to apply Python basics and data structures (CO 5, Unit 2).
- 5. Web Scraping Practice: Implement web scraping in class to extract data from websites using Python libraries (CO 4, Unit 4).
- 6. Error-Handling Workshops: Collaboratively debug code with exception-handling techniques, promoting troubleshooting skills (CO 3, Unit 3).
- 7. Function Design Practice: Group exercises in designing clean, efficient functions using lambda, map, and filter functions (Unit 2).

Outside Classroom Learning:

- 1. Online Coding Competitions: Participation in coding challenges on platforms like LeetCode or HackerRank to practice clean code (CO 1-5).
- 2. Industry Guest Lectures: Attending talks by professionals about Python's application in cybersecurity and real-world coding practices (Course Perspective).

- 3. Group Web Scraping Projects: Students collaborate on web scraping projects using real-world data to extract insights from websites (CO 4, Unit 4).
- 4. Database Connectivity Assignments: Real-time project work with MySQL databases, creating systems to fetch and insert data (Unit 5).
- 5. Open-Source Contributions: Students contribute to open-source Python projects, adhering to clean coding standards (CO 1-5).
- 6. Hackathons: Participation in hackathons focused on building Python-based solutions for cybersecurity challenges (CO 5).
- **7.** Documentation Writing: Students practice writing clear, concise documentation for their Python projects, reinforcing clean coding habits (CO 1-5)

Text and Reference Book

- 1. J. Peterson, A. Silberschatz, and P. Galvin, "Operating System Concepts", Addison Wesley. 2012
- 2. V. Aho, R. Sethi, and J. D. Ullman, "Compilers: Principles, Techniques and Tools", Addison-Wesley. 2013
- 3. R. El. Masri and S. B. Navathe, "Fundamentals of Data Base Systems", Benjamin Cummings. 2013

Additional Readings:

- **R 1.** <u>https://www.tutorjoes.in/python_programming_tutorial/</u>
- R 2. https://www.udemy.com/course/100-days-of-code/
- **R 3.** <u>https://favtutor.com/blog-details/7-Python-Projects-For-Beginners</u>
- R 4. <u>https://github.com/NaviRocker/100-days-of-python</u>
- **R 5.** <u>https://hackr.io/blog/python-projects</u>

Online Learning Resources

1. Codecademy

- Offers interactive Python courses that cover basic to advanced programming concepts, including data types, control structures, functions, and object-oriented programming.
- Link: <u>Codecademy Python</u>

2. Python.org

- The official Python website provides a comprehensive beginner's guide, documentation, and tutorials to get started with Python programming.
- Link: <u>Python Beginner's Guide</u>

CLEAN CODING WITH PYTHON LAB

Programme Name:	B. Tech CSE with Specialization in Cyber Security			
Course Name:	Course Code	L-T-P	Credits	
Clean Coding with PythonLab	ENSP151	0-0-2	1	
Type of Course:	IDC-2		<u></u>	
Pre-requisite(s), if any: Working Knowledge of any programming language like C will be an added				
advantage				

Defined Course Outcomes

COs	Statements
CO 1	Developing solutions to simple computational problems using Pythonprograms.
CO 2	Solving problems using conditionals and loops in Python. Develop Python programs by defining functions and calling them.
CO 3	Implementing Python lists, tuples and dictionaries for representing compound data.
CO 4	Understanding the Machine Learning Algorithms.

List of Experiments

Ex. No	Experiment Title	Mapped
		CO/COs
1	Develop programs to understand the control structures of python	CO 1
2	Develop programs to implement list	CO 3
3	Develop programs to implement Dictionary	CO 3
4	Develop programs to implement tuples	CO 3
5	Develop programs to implement function with stress onscoping	CO 2
6	Develop programs to implement classes and objects	CO 3
7	Develop programs to implement exception handling.	CO 1
8	Develop programs to implement linear search and binarysearch.	CO 2
9	Develop programs to implement insertion sort	CO 2
10	Develop programs to implement bubble sort.	CO 2
11	Develop programs to implement quick sort.	CO 2
12	Develop programs to implement heap sort.	CO 2

ENGINEERING PHYSICS

Program Name:	B. Tech CSE with Specialization in Cyber Security			
Course Name: Engineering Physics	Course Code	L-T-P	Credits	Contact Hours
	ENPH101	3-1-0	4	40
Type of Course:	Major-2			
Pre-requisite(s), if any: Knowledge of Basic physics and calculus (differentiation, integration).				

Course Perspective. This course introduces students to the fundamental concepts of Engineering Physics, bridging the gap between theoretical physics principles and practical engineering applications. Engineering Physics is crucial for understanding and designing new technologies and systems in various engineering fields such as electronics, materials science, and mechanical engineering. Students will explore core topics including mechanics, Optics, Polarization, and modern physics, with a special emphasis on their relevance to real-world engineering problems. The course is divided into 4 modules:

- a) Mechanics
- b) Optics
- c) Polarization

d) New Engineering Materials

The Course Outcomes (COs). On completion of the course the participants will be able to :

COs	Statements
CO 1	Understanding the principles and applications of lasers, fiber optics, and electromagnetic waves.
CO 2	Applying the concepts of polarization to analyze and manipulate light in various optical systems.
CO 3	Evaluating the properties and applications of dielectric materials, superconducting materials, and nano-materials in engineering contexts.
CO 4	Designing and propose innovative applications of lasers, fiber optics, and smart materials for specific engineering challenges.
CO 5	Analyzing problems related to the behavior of electromagnetic waves, polarization, and optical communication systems.

Course Outline:

Unit Number: 1	Title: Mechanics	No. of hours: 10		
Content:				
Centre of mass, centre of ma	ass of two particle system and a rigid body, Rotation	onal motion, Moment of Inertia		
and its physical significance	e, Radius of gyration, Acceleration due to grav	vity, simple harmonic motion,		
differential equation of S.H.I	M., Examples of S.H.M. (simple and compound pe	endulum)		
Unit Number: 2	Title: Optics	No. of hours: 10		
Content:				
Light: Introduction of light	t, properties of light, Dual Nature of light, ref	fraction, Refraction by prism,		
Interference of light, interference by divison of wavefront (Young's double slit experiment), Interference by				
division of wave amplitude (Newton's ring), difference between diffraction and interference, types of				
diffraction, Fraunhoffer diffraction (single and double slit), theory of plane diffraction grating, determination				
of wavelength of a spectral line using transmission grating				
Laser: Introduction, principle of Laser, stimulated and spontaneous emission, Ruby laser, He-Ne Laser,				
Application of Lasers.				

Unit Number: 3	Title: Polarization	No. of hours: 10	
Content:		· ·	
Polarization: Polarization b	reflection and refraction, Brewster's law, do	uble refraction, nicol prism, quarter	
and half-wave plates, Produc	tion and analysis of circularly and elliptically	polarized light	
Unit Number: 4	Title: New Engineering Materials	No. of hours: 10	
Content:			
Dielectric materials: Defini	ion - Dielectric Breakdown - Dielectric loss -	- Internal field – Claussius Mossotti	
relation.			
Superconducting materials: Introduction – Properties- Meissner effect – Type I & Type II superconductors –			
BCS theory-Applications.			
Nanomaterials: Introduction - Synthesis of nano materials - Top down and Bottom-up approach- Ball			
milling- PVD method- Applications. Smart materials: Shape memory alloys-Biomaterials (properties and			
applications)			

Learning Experience

Inside Classroom Learning Experience:

- Interactive Lectures: Use PPTs to explain key concepts.
- Conceptual Understanding: Cover topics like SHM, polarization, and laser principles through realworld examples and problem-solving.
- Problem-Solving Sessions: Engage students with in-class exercises on mechanics, optics, and electromagnetic waves to strengthen theoretical understanding.
- Theory Assignments: Assign problems on polarization and nanomaterials to be solved during class and discussed with peers.
- Group Work: Students collaborate on real-world engineering tasks, such as analyzing optical systems using lasers or fiber optics.
- Case Studies: Discuss engineering applications of superconducting materials and smart materials to connect theory with industry practices.
- Continuous Feedback: Conduct quizzes and short assessments in class to provide immediate feedback on students' grasp of core physics principles.

Outside Classroom Learning Experience:

- Theory Assignments: Assign take-home problems that require applying physics concepts like laser technology or material properties to practical situations.
- Question Bank: Encourage students to practice with model questions related to mechanics, optics, and materials for self-assessment and revision.
- Online Forums: Students participate in online discussions to collaborate on solving physics problems, particularly in areas like polarization and diffraction.
- Self-Study: Research and explore modern physics technologies, such as the latest advancements in superconducting materials or nanotechnology.
- Collaborative Projects: Work in teams to design innovative applications of physics concepts, such as building models based on polarization or developing smart materials for engineering challenges.

Textbooks:

- 1. Fundamentals of Physics" by David Halliday, Robert Resnick, and Jearl Walker
- 2. University Physics with Modern Physics" by Hugh D. Young and Roger A. Freedman

Reference Book

- 1. Engineering Physics" by Gaur and Gupta
- 2. Concepts of Modern Physics" by Arthur Beiser
- 3. Physics for Scientists and Engineers" by Raymond A. Serway and John W. Jewett.

Additional Readings:

Online Learning Resources for Engineering Physics

R 1. MIT OpenCourseWare - Physics

- MIT offers a variety of free courses in physics that cover topics from classical mechanics to quantum physics.
- Link: <u>MIT OpenCourseWare Physics</u>

R 2. Physics LibreTexts

- A comprehensive online library covering numerous topics in physics at various levels of complexity. It's part of the LibreTexts project, which aims to develop freely accessible textbooks.
- Link: Physics LibreTexts

R 3. YouTube - Stanford University Physics Lectures

- This channel features recorded lectures from Stanford University's physics department, covering advanced topics such as quantum mechanics and general relativity.
- Link: <u>Stanford Physics YouTube</u>

ENGINEERING PHYSICS LAB

Program Name:	B. Tech CSE with Sp	B. Tech CSE with Specialization in Cyber Security	
Course Name:	Course Code	L-T-P	Credits
Engineering Physics Lab	ENPH151	0-0-2	1
Type of Course:	Major-3		
Pre-requisite(s), if any:			

Defined Course Outcomes

COs	Statements
CO 1	Understanding the principles and concepts related to the experiments involving bar pendulum, flywheel, Kater's pendulum, Newton's ring apparatus, plane diffraction grating, spectrometer,
	and half shade polarimeter.
CO 2	Applying the principles and concepts learned to conduct experiments and analyze experimental data, plot graphs, and interpret the results to determine various physical quantities.
CO 3	Evaluating the accuracy and reliability of experimental measurements and results obtained from the conducted experiments.
CO 4	Applying critical thinking and problem-solving skills to troubleshoot experimental setups, identify sources of errors, and propose solutions to improve the accuracy and precision of measurements

LAB EXPERIMENTS

Ex. No	Experiment Title	Mapped CO/COs
1	To plot a graph between the distance of the knife edge from the center	CO2, CO3
	of gravity and the time period of the bar pendulum. From the graph,	
	find the acceleration due to gravity, the radius of gyration and the	
	moment of inertia of the bar about an axis.	
2	To determine the moment of inertia of a flywheel about its own axis of	CO1, CO2, CO3,
	motion.	CO4
3	To determine the value of acceleration due to gravity using Kater's	CO1, CO2, CO3,
	pendulum.	CO4
4	To determine the wavelength of sodium light using Newton's ring	CO1, CO2, CO3
	apparatus.	
5	To determine the wavelength of prominent lines of mercury by plane	CO1, CO2, CO3
	diffraction grating.	
6	To determine the refractive index of the material of the prism for the	CO1, CO2, CO3
	given colours (wavelengths) of mercury light with the help of	
	spectrometer.	

7	To determine the specific rotation of cane sugar solution with the help	CO1, CO2, CO3,
	of half shade polarimeter.	CO4
8	To determine the wavelength of He-Ne LASER using transmission	CO1, CO2, CO3
	diffraction grating.	

ENGINEERING DRAWING &

WORKSHOP LAB

Program Name	B. Tech CSE with Specialization in Cyber Security		
Course Name:	Course Code	L-T-P	Credits
Engineering Drawing and Workshop Lab	SEC033	0-0-4	2
Type of Course:	SEC-1		
Pre-requisite(s), if any: Basic geometry and familiarity with tools.			

Defined Course Outcomes

COs	Statements
CO1	Understanding the polygons, circles and lines with different geometric conditions

CO2	Drawing the projection of points, lines and planes under different conditions and orthographic views from isometric views of simple objects
CO3	Determining manufacturing methods in different fields of engineering and Practical exposure to different fabrication techniques
CO4	Creating of simple components using different materials
CO5	Exposing to some of the advanced and latest manufacturing techniques being employed in the industry.

LAB EXPERIMENTS

EXPERI	EXPERIMENT TITLE	
MENT		
NO.		
	Engineering Graphics	CO/COs
1	Manual drafting of basic geometric constructions and shapes using set squares, and compass.	CO1
2	Understand and draw different projections, apply to create points and lines, in all quadrants.	CO1
3	Draw orthographic projections of simple objects like cubes, cylinders, and prisms.	CO2
4	Create isometric drawings of simple assemblies.	CO1
5	Introduction to CAD System & AutoCAD and understand basic commands.	CO3
6	Use AutoCAD to recreate the manually drawn orthographic projections.	CO3
7	Create similar drawings using an open-source tool like LibreCAD.	CO5
8	Model simple objects (like a nut and bolt) in 3D using AutoCAD or similar software.	CO1
9	Draw and assemble a small mechanical device (like a piston or gear assembly) using CAD software	CO2

10	Design and draw an entire machine or a significant part of it, incorporating all the	CO3
	skills learned (Mini Project)	
	Workshop Technology	
1	Demonstrate safe handling and use of various hand tools and power tools.	CO2
2	File, saw, and drill a metal piece to create a simple object such as a fitting job.	CO3
3	Create a joint or assemble parts using hand tools, ensuring tight fit and proper alignment.	CO4
4	Perform simple welding and brazing tasks to join metal pieces.	CO5
5	Design and create a shaft on lathe machine using MS Rod.	CO2
6	Design and create a flat V Job on Shaper machine using MS Block.	CO3
7	Design and manufacture a sheet metal tray, In sheet Metal Shop.	CO3
8	Measure, cut, and assemble wooden parts to create a simple structure, such as frame or T-Joint.	CO5
9	Ability to program basic CNC machine operations and understand CNC machining processes.	CO1
10	Design and 3D print a small part or model using CAD software.	CO3

Inside Classroom Learning Experience:

- 1. **Interactive Demonstrations**: Hands-on demonstrations for drawing geometric constructions and projections using manual drafting tools.
- 2. **CAD Software Tutorials**: In-class sessions to learn basic commands and operations in CAD software like AutoCAD or LibreCAD.
- 3. **Problem-Solving Sessions**: Exercises on creating orthographic projections and isometric views of various objects, discussed and solved in class.
- 4. **Workshop Practice**: Supervised sessions to use workshop tools and machines, such as lathes, shapers, and CNC machines, with live demonstrations.
- 5. **Group Work**: Collaborative activities for assembling small mechanical devices or creating 3D models using CAD software.
- 6. **Mini-Projects**: Students work on mini-projects, applying all learned skills to design and draw complete machine components or parts.
- 7. **Continuous Feedback**: In-class quizzes and frequent assessments on drafting techniques and workshop safety practices.

Outside Classroom Learning Experience:

- 1. **Take-home Drafting Assignments**: Practice drawing projections and creating geometric shapes at home using manual drafting tools.
- 2. **CAD Practice**: Students work on additional exercises to enhance their CAD skills, creating complex models outside of class.
- 3. **Online Forums**: Participate in discussions or forums to troubleshoot CAD and workshop-related queries with peers and instructors.
- 4. **Independent Workshop Projects**: Apply workshop techniques learned in class to create simple objects at home or during independent lab hours.
- 5. **Self-Study on Manufacturing Methods**: Research the latest trends and methods in manufacturing, like CNC machining or 3D printing, and relate them to class content.
- 6. **Collaborative Projects**: Work in groups to design and 3D print small parts or models using CAD software, applying both theoretical and practical knowledge.

CYBERSECURITY ESSENTIALS

Programme Name:	B.Tech CSE wi	B.Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Cybersecurity Essentials		2-0-0	2	30
Type of Course:	SEC-2			
Pre-requisite(s): Basic understanding of networking concepts and computer fundamentals				

Course Perspective: This course, "Foundations of Cybersecurity: Concepts and Practical Applications," introduces students to the essential principles and practices of cybersecurity, a critical field in today's technology-driven world. The course aims to provide a comprehensive understanding of cybersecurity threats, vulnerabilities, and defenses, enabling students to protect systems and data effectively. It covers foundational knowledge in Linux and network security, equipping students with practical skills to set up secure environments, analyze network traffic, and apply cybersecurity tools and techniques. Through a blend of theoretical concepts and practical applications, students will develop the proficiency needed to address complex cybersecurity challenges. The course is divided into four units:

- 1. Introduction to Cybersecurity
- 2. Linux for Cybersecurity
- 3. Network Security
- 4. Web and Application Security

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the fundamental concepts of cybersecurity, including various types of threats, vulnerabilities, and defense mechanisms.
CO 2	Applying the basic principles and commands of Linux, and the importance of secure environments in cybersecurity.
CO 3	Analyzing essential network security practices and the concepts behind analyzing and protecting network traffic.
CO 4	Remembering the principles of web and application security, including common web vulnerabilities and their impact.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Cybersecurity	No. of hours: 5	
Fundamental concepts of cybersecurity, Types of cybersecurity threats and vulnerabilities ,Basic def			
mechanisms, Cybersecurity frameworks and standards, Case studies on cybersecurity incidents			
Unit Number: 2	Title: Linux for Cybersecurity	No. of hours: 5	
Content:			
Introduction to Lin	nux and basic commands, File and directory	permissions, User and group management,	
Setting up a secure	e Linux environment, Basic networking com	nmands (ping, ifconfig, netstat), Setting up a	
virtual lab using V	irtualBox		
Unit Number: 3	Title: Network Security	No. of hours: 10	
Content:			
Introduction to network security concepts, Network protocols and their vulnerabilities Tools for network			
security (Wireshark, tcpdump, Nmap), Basic firewall configuration (iptables, UFW), Intrusion detection			
systems (Snort), N	etwork scanning and enumeration techniques.		
Unit Number: 4	Title: Web and Application Security	No. of hours: 10	
Content:			
Web application vulnerabilities and security practices, SQL injection and cross-site scripting (XSS),			
Password crackin	Password cracking techniques, Web vulnerability scanning tools (Nikto), Secure coding practices,		
Introduction to cryptography with OpenSSL, Wireless network security (aircrack-ng), Simulating phishing			
attacks			

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Use PPTs and case studies to explain key cybersecurity concepts.
- 2. **Conceptual Understanding**: Cover fundamental topics like threat modeling, encryption, and network security.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on identifying vulnerabilities and mitigation strategies.

- 4. Theory Assignments: Assign theoretical problems with discussions on solutions in class.
- 5. Group Work: Collaborate on cybersecurity scenarios to enhance team problem-solving skills.
- 6. Case Studies: Analyze real-world cybersecurity breaches and their implications.
- 7. Continuous Feedback: Implement in-class quizzes and feedback sessions to assess understanding.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying cybersecurity concepts to practical situations.
- 2. Lab Projects: Facilitate hands-on labs involving security tools and techniques.
- 3. Question Bank: Provide practice problems and resources for self-assessment.
- 4. Online Forums: Create platforms for students to discuss cybersecurity challenges and solutions.
- 5. Self-Study for Case Studies: Encourage independent research on recent cybersecurity incidents and defenses.
- 6. **Collaborative Projects**: Organize group projects focused on developing security policies and protocols.

Text Books

T1. "The Web Application Hacker's Handbook" by Dafydd Stuttard and Marcus Pinto

T2. "Linux Basics for Hackers" by OccupyTheWeb

Reference Books

- R1. "Hacking: The Art of Exploitation" by Jon Erickson
- R2. "Metasploit: The Penetration Tester's Guide" by David Kennedy et al.
- R3. "Practical Malware Analysis" by Michael Sikorski and Andrew Honig

Online Learning References

- 1. Cybrary: Offers free and paid courses on various cybersecurity topics.
- 2. Kali Linux Documentation: Official documentation for using Kali Linux tools.
- 3. OWASP: Resources and tools for web application security.
- 4. Wireshark Documentation: Comprehensive guides on using Wireshark for network packet analysis.
- 5. Nmap Documentation: Detailed instructions and examples for using Nmap for network scanning.

Evaluation Scheme:

Evaluation Components	Weightage
Internal Evaluation: (50 marks)	50 Marks
• Certification: 40 marks	
• Viva-Voce: 10 Marks	

External Marks (Theory): -	50 Marks
End term Examination	
 Students must appear for written exam in end term 	
 Questions will be asked from the defined syllabus 	
Total	100 Marks

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Examination separately to secure minimum passing grade).

SEMESTER: II

LINEAR ALGEBRA AND ORDINARY

DIFFERENTIAL EQUATIONS

Programme Name:	gramme Name: B. Tech CSE with Specialization in Cyber Security		ecurity	
Course Name: Linear Algebra and Ordinary	Course Code	L-T-P	Credits	Contact Hours
Differential Equations	ENMA102	3-1-0	4	40
Type of Course:	Major-4			

Pre-requisite(s): Basic knowledge on Single variable calculus, Matrices, Differentiation and Integration

Course Perspective. This course aims to provide students with a thorough understanding of linear algebra and ordinary differential equations (ODEs), foundational mathematical tools essential in various fields of science and engineering. The course integrates theoretical knowledge with practical applications, enabling students to solve complex problems and understand systems that vary across time and space. The course is divided into 4 modules:

- a) Matrices and Systems of Linear Equations
- b) Eigenvalues and Eigenvectors
- c) Vector Spaces
- d) Ordinary Differential Equations

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Identifying the properties of various types of matrices, such as symmetric, skew-symmetric, Hermitian, skew Hermitian, unitary, and orthogonal matrices.
CO 2	Analyzing quadratic forms and apply eigenvalues and eigenvectors in practical situations.
CO 3	Defining vector spaces, subspaces, linear independence, and basis.
CO 4	Determining the dimension of vector spaces and compute row space, column space, and null space of matrices.
CO 5	Solving first-order linear, separable, exact, and homogeneous differential equations.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

T	Title: Matrices and Systems of Linear	No. of Louise 10	
Unit Number: 1	Equations	No. of nours: 10	
Content: Matrix with operation, Types of Matrix (Symmetric and skew symmetric matrix, Hermitian and			
skew Hermitian m	natrix, unitary and orthogonal matrix), Deter	rminant of Matrix, Inverse and transpose of	
matrices, Elementa	matrices, Elementary row operations, Systems of Linear Equations, Homogeneous and non-homogeneous		
systems, Solutions	systems, Solutions of linear systems Gaussian, elimination and row echelon form, Rank of matrix.		
Unit Number: 2	Title: Eigenvalues and Eigenvectors	No. of hours: 10	
Content: Definiti	on and properties of eigenvalues and	eigenvectors, Diagonalization of matrices,	
Eigenvalues and	eigenvectors of symmetric, skew symmetri	x, hermition, skew hermition, unitary and	
orthogonal matric	es, Calyey Hamilton Theorem, Rank and nul	lity of a matrix, Diagonalization of matrices,	
Minimal polynom	ial, characteristic polynomial, and generaliz	ed eigenvectors. The Jordan Normal Form	
Theorem for linear	operators on a finite dimensional complex v	ector space, Quadratic forms, Applications of	
eigenvalues and eig	genvectors.		
Unit Number 2			
Unit Number: 5	Title: Vector Spaces	No. of hours: 10	
Content: Introduc	tion to vector spaces, Subspaces and spar	nning sets, Linear independence and basis,	
Content: Introduc Dimension of vec	ction to vector spaces, Subspaces and spar tor spaces, Row space, column space, and	nning sets, Linear independence and basis, null space, Linear transformations, Matrix	
Content: Introduc Dimension of vec representation of li	tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal	
Content: Introduce Dimension of vec representation of li bases and Gram-So	tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal least squares approximations, Applications of	
Content: Introduce Dimension of vec representation of li bases and Gram-So Linear Algebra, Ma	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and f arkov chains and transition matrices.	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal least squares approximations, Applications of	
Content: Introduc Dimension of vec representation of li bases and Gram-So Linear Algebra, Ma	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and f arkov chains and transition matrices.	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal least squares approximations, Applications of	
Content: Introduce Dimension of vec representation of li bases and Gram-So Linear Algebra, Ma Unit Number: 4	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and f arkov chains and transition matrices. Title: Ordinary Differential Equations	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal least squares approximations, Applications of No. of hours: 10	
Content: Introduce Dimension of vec representation of li bases and Gram-So Linear Algebra, Ma Unit Number: 4	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and f arkov chains and transition matrices. Title: Ordinary Differential Equations	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix nner products and orthogonality, Orthonormal least squares approximations, Applications of No. of hours: 10	
Content: Introduce Dimension of vec representation of lib bases and Gram-So Linear Algebra, Ma Unit Number: 4 Content: Introduce equations, First-or	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and t arkov chains and transition matrices. Title: Ordinary Differential Equations ction to ordinary differential equations, In rder linear differential equations, Separable	No. of hours: 10 nning sets, Linear independence and basis, null space, Linear transformations, Matrix mer products and orthogonality, Orthonormal least squares approximations, Applications of No. of hours: 10 Definition and classification of differential e differential equations, Exact differential	
Content: Introduce Dimension of vector representation of lib bases and Gram-So Linear Algebra, Ma Unit Number: 4 Content: Introduce equations, First-or equations, Integra	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and t arkov chains and transition matrices. Title: Ordinary Differential Equations ction to ordinary differential equations, I rder linear differential equations, Separable ting factors, Applications of first-order	No. of hours: 10 ming sets, Linear independence and basis, null space, Linear transformations, Matrix mer products and orthogonality, Orthonormal least squares approximations, Applications of No. of hours: 10 Definition and classification of differential e differential equations, Exact differential differential equations, Second-order linear	
Content: Introduce Dimension of vec representation of li bases and Gram-So Linear Algebra, Ma Unit Number: 4 Content: Introduce equations, First-on equations, Integra differential equation	tion to vector spaces, Subspaces and spar tor spaces, Row space, column space, and near transformations, Inner Product Spaces, In chmidt process, Orthogonal projections and t arkov chains and transition matrices. Title: Ordinary Differential Equations ction to ordinary differential equations, In rder linear differential equations, Separable ting factors, Applications of first-order ons, Homogeneous differential equations, Me	No. of hours: 10 ming sets, Linear independence and basis, null space, Linear transformations, Matrix mer products and orthogonality, Orthonormal least squares approximations, Applications of No. of hours: 10 Definition and classification of differential equations, Exact differential differential equations, Second-order linear ethod of undetermined coefficients, Variation	

Learning Experiences

Classroom Learning Experience

1. **Interactive Lectures**: Use PPTs and visual aids to explain key concepts in linear algebra and differential equations.

- 2. **Conceptual Understanding**: Cover fundamental topics like matrix operations, eigenvalues, and solutions of ODEs.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises on systems of equations and differential equations.
- 4. Theory Assignments: Assign theoretical problems with solutions discussed in class.
- 5. Group Work: Collaborate on problem-solving for real-world applications in engineering and science.
- 6. **Case Studies**: Analyze applications of linear algebra and differential equations in various fields.
- 7. Continuous Feedback: Implement in-class quizzes and feedback sessions to assess understanding.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign take-home projects applying concepts to practical problems.
- 2. Lab Projects: Facilitate hands-on projects involving software tools for linear algebra and ODEs.
- 3. Question Bank: Provide practice problems and model papers for self-assessment.
- 4. **Online Forums**: Create platforms for students to discuss and collaborate on problems.
- 5. **Self-Study for Case Studies**: Encourage independent research on applications of linear algebra and ODEs.
- 6. **Collaborative Projects**: Organize group projects focused on modelling real-world phenomena using linear algebra and differential equations.

Book Reference:

- Strang, G. (2009). Introduction to Linear Algebra (4th ed.). Wellesley-Cambridge Press.
- Boyce, W. E., & DiPrima, R. C. (2017). Elementary Differential Equations and Boundary Value Problems (11th ed.). John Wiley & Sons.
- Tenenbaum, M., & Pollard, H. (1963). Ordinary Differential Equations. Dover Publications.

NETWORK DEFENSE ESSENTIALS LAB

Programme Name:	B. Tech CSE with Specialization in Cyber Security			
Course Name: Network Defense Essentials Lab	Course Code	L-T-P	Credits	Contact Hours
Tetwork Derense Essentials Lab	ENSP156	0-0-4	2	40
Type of Course:	IDC-3			
Pre-requisite(s), if any: Fundamental Knowledge of Computer Networking & Internet				

COs	Statements
CO1	Implementing security measures for access control, encryption, and secure communication
	across various systems and devices.
CO2	Managing and securing system configurations, including password policies, firewalls, IDS,
	and data backup/recovery
CO3	Analyzing and securing network traffic using firewalls, IDS, and VPNs to detect and mitigate
	potential threats
CO4	Configuring and auditing security for cloud environments, containers, and network
	infrastructure to ensure compliance and protection.

L

Lab Experiments

	Mapped
Experiment Title	CO/COs
Implementing Access Controls in Windows Machine	CO1
Implementing Role-Based Access Control in Windows Admin Center (WAC)	CO1
Implementing Password Policies using Windows Group Policy	CO2
Implementing Host-Based Firewall Protection with iptables	CO2
Implementing Host-Based Firewall Functionality using Windows Firewall	CO2
Implementing Network-Based Firewall Functionality: Blocking Unwanted	
Website Access using pfSense Firewall	CO3
Implementing Network-Based Firewall Functionality: Blocking Insecure Ports	
using pfSense Firewall	CO3
Implementing Host-Based IDS Functionality using Wazuh HIDS	CO2

Implementing Network-Based IDS Functionality using Suricata IDS	CO3
Detect Malicious Network Traffic using HoneyBOT	CO3
Establishing Virtual Private Network Connection using SoftEther VPN	CO3
Auditing Docker Host Security Using Docker-Bench-Security Tool	CO4
Implementing AWS Identity and Access Management	CO4
Securing Amazon Web Services Storage	CO4
Configuring Security on a Wireless Router	CO4
Implementing Enterprise Mobile Security using Miradore MDM Solution	CO4
Securing IoT Device Communication using TLS/SSL	CO1
Calculate One-way Hashes using HashCalc	CO1
Calculate MD5 Hashes using HashMyFiles	CO1
Create a Self-signed Certificate	CO1
Perform Disk Encryption using VeraCrypt	CO1
File Recovery using EaseUS Data Recovery Wizard	CO2
Backing Up and Restoring Data in Windows	CO2
Implementing Network-Based Firewall Functionality: Blocking Unwanted	
Website Access using pfSense Firewall.	CO3
Implementing Network-Based Firewall Functionality: Blocking Insecure Ports	
using pfSense Firewall	CO3
Implementing Host-Based IDS Functionality using Wazuh HIDS	CO2
Implementing Network-Based IDS Functionality using Suricata IDS	CO3
Capturing Network Traffic using Wireshark	CO3
Applying Various Filters in Wireshark	CO3
Analyzing and Examining Various Network Packet Headers in Linux using	
tcpdump	CO3

Learning Experiences

Inside Classroom

- Hands-on Lab Sessions: Implement access control mechanisms and security configurations using tools and virtual machines.
- Case Study Discussions: Analyze real-world breaches and discuss how implemented controls could prevent them.
- Simulated Cyber Attacks: Conduct attack simulations to observe how firewalls and IDS respond.
- Interactive Demos: Demonstrate VPN, encryption, and hashing tools in real-time.

• Peer Learning: Students collaborate on solving security challenges in small groups.

Outside Classroom

- Industry Webinars: Attend webinars on emerging cybersecurity threats and solutions.
- Capture the Flag (CTF) Competitions: Participate in cybersecurity competitions to practice skills.
- **Cloud Lab Exercises**: Explore security configurations and IAM setups on AWS.
- **Research and Presentations**: Investigate real-world cybersecurity incidents and present mitigation strategies.
- Field Visits: Visit data centers or security operations centers (SOCs) to see cybersecurity in action.

Textbooks and Reading Materials

"Security+ Guide to Network Security Fundamentals" by Mark Ciampa

Program Name	B. Tech CSE with Specialization in Cyber Security			
Course Name: ENGINEERING CHEMISTRY	Course Code	L-T-P	Credits	Contact Hours
	ENCH101	3-1-0	4	40
Type of Course:	Major-6	·	·	·
Pre-requisite(s), if any: Nil				

ENGINEERING CHEMISTRY

Course Perspective: This course introduces students to the fundamental concepts and applications of chemistry in engineering. It is tailored specifically for engineering students to understand the chemical principles underlying various technological processes and materials essential in modern engineering. By exploring topics like water technology, chemical fuels, battery technology, and polymers, the course aims to provide students with a robust foundation in the chemical sciences that directly relates to their future fields of work. The course is divided into 4 modules:

- a) Water technology
- b) Chemical Fuels
- c) Battery Technology
- d) Polymer

The Course Outcomes (COs). On completion of the course the participants will be able to :

COs	Statements
CO 1	Understanding the methods for water hardness and alkalinity testing, and the basics of boiler water treatment.
CO 2	Explaining the process of dissolved oxygen determination and chemical oxygen demand analysis.
CO 3	Determining various methods to enhance the quantity & quality of Fuel.
CO 4	Identifying between hard and soft water, solve the related numerical problems on water purification and its significance in industry and daily life.
CO 5	Articulating basic concepts of chemistry in daily life.
CO 6	Designing efficient process for water analysis and purification

Course Outline:

Unit Number: 1	Unit Number: 1Title: Water technologyNo. of hours: 10						
Content:							
Introduction to Water Techr	Introduction to Water Technology: Importance and applications of water in various industries.						
Water Analysis: Hardness:	Determination by EDTA method, Alkalinity	y: Determination by double					
indicator method.							
Treatment of Boiler Feed Wa	ater						
Internal Treatment: Phosphate	conditioning, Colloidal conditioning, Calgon co	onditioning					
External Treatment: on exchan	ge process, Lime-soda process, Zeolite process						
Determination of Dissolved Gases: Dissolved oxygen: Determination by Winkler's method, Chemical							
oxygen demand: Determinatio	n.						
Boiler Scales Formation an	nd Prevention: Formation and ill effects of	boiler scales., Methods of					
prevention of scales.							
Numerical Problems: Calculations related to water analysis and treatments.							
Unit Number: 2	Unit Number: 2Title: Chemical FuelsNo. of hours: 10						

Content :

Fuels: Introduction, classification, calorific value (HCV & LCV), Determination of calorific value of fuel using Bomb calorimeter.

Solid fuel: Coal- its analysis by proximate and ultimate analysis, Numerical problems.

Liquid fuels: Refining of petroleum, Petroleum cracking, Reformation of petrol-explanation with reactions, Knocking in IC engine, its ill effects and prevention of knocking. Anti-knocking agent: Leaded and unleaded petrol. Power alcohol and its advantages. Synthetic petrol - Bergius process.

Gaseous fuels: LPG, CNG and their applications.

Content :

Introduction to Battery Technology: Galvanic cell, Electrode potential, EMF of the cell, Cell representation.

Batteries and Their Importance: Classification of batteries: Primary, Secondary, and Reserve batteries. Examples of each type.

Battery Characteristics: Voltage, Capacity, Energy density, Power density, Energy efficiency, Cycle life, Shelf life.

Commercial Batteries: Basic requirements for commercial batteries.

Construction, Working, and Applications: Ni-Cd battery, Lithium-ion battery.

Fuel Cells: Differences between batteries and fuel cells. Classification of fuel cells based on: Type of fuel, Electrolyte, Temperature.

Unit Number: 4	Title: Polymer	No. of hours: 10
----------------	----------------	------------------

Content:

Basic Concepts of Polymers: Definition and types of polymers.

Types of Polymers: Thermoplastic polymers, Thermosetting plastics.

Preparation and Applications of Industrially Important Polymers: Natural rubber, Buna S, Buna-N, Neoprene, Isoprene, Nylon-6, Nylon-6, Dacron, Terylene.

Advanced Polymers: Conducting polymers, Biodegradable polymers.

Learning Experiences:

Classroom Learning Experience

1. **Interactive Lectures**: Use PPTs and demonstrations to explain key chemistry concepts relevant to engineering.

- 2. **Conceptual Understanding**: Cover fundamental topics like thermodynamics, kinetics, and material science.
- 3. Problem-Solving Sessions: Conduct in-class exercises on chemical calculations and reactions.
- 4. **Theory Assignments**: Assign theoretical problems, with solutions discussed in class.
- 5. **Group Work**: Collaborate on projects involving chemical processes and materials.
- 6. **Case Studies**: Analyze real-world applications of chemistry in engineering fields.
- 7. Continuous Feedback: Implement in-class quizzes and feedback sessions to assess understanding.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying chemistry concepts to engineering challenges.
- 2. Lab Projects: Facilitate hands-on experiments that explore chemical principles in practical applications.
- 3. Question Bank: Provide practice problems and model papers for self-assessment.
- 4. **Online Forums**: Create platforms for students to discuss and collaborate on chemistry problems.
- 5. Self-Study for Case Studies: Encourage independent research on recent advancements in engineering chemistry.
- 6. **Collaborative Projects**: Organize group projects focused on developing sustainable chemical processes or materials.

Text Books

T1: Principles of Physical Chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania, S. Nagin Chand and Co.

T2: Physical Chemistry by Soni and Dharmatha, S. Chand & Sons.

T3: Polymers science by Gowarikar and Vishwanathan.

Reference Books:

- **R1.** Corrosion Engineering by M. G. Fontana, Mc Graw Hill Publications.
- **R 2.** Engineering Chemistry by Jain and Jain.

Additional Readings:

Basics of electrochemistry:

https://mrcet.com/downloads/digital_notes/HS/4%20ENGINEERING%20CHEMISTRY.pdf

Basics of polymer:

https://gnindia.dronacharya.info/APS/Downloads/SubjectInformation/Chemistry/Unit2/Lecture_1_130220 19.pdf

ENGINEERING CHEMISTRY LAB

Program Name		B. Tech CSE with Specialization in Cyber Security				
Course Name:		Course Code	L-T-P	Credits		
ENGINEERING	CHEMISTRY	ENCH151	0-0-2	1		
LAB						
Type of Course:		Major-7				

Defined Course Outcomes

	Applying	various	experi	mental	tech	nniques	commonly	used	in	cher	nistry	labs,	such	as
CO1	titrations,	distillati	ons, e	xtractio	ons,	chroma	tography,	spectro	oscoj	ру,	and	electro	chemi	cal
	methods.													

	Acquiring proficiency in handling and operating laboratory equipment, including but not
CO2	limited to balances, pipettes, burettes, spectrophotometers, pH meters, and other analytical
	instruments.
002	Developing skills in recording and analysing experimental data, including data interpretation
003	of results.
CO4	Understanding hands-on experience in synthesizing various chemical compounds and organic
C04	polymers
CO5	Illustrating to write concise and accurate laboratory reports, including experimental
COS	procedures, observations, results, and conclusions.
CO6	Understanding the ethical responsibilities and laboratory safety protocols associated with
00	conducting experiments.

Ex. No	Experiment Title	Mapped CO/COs
1	Determination of temporary and permanent hardness in water sample using EDTA.	CO1, CO3, CO5
2	Determination of alkalinity in the given water sample.	CO1, CO3, CO5
3	Determination of viscosity of given liquid.	CO2, CO3, CO5
4	Determination of surface tension of given liquid.	CO2, CO3, CO5
5	Determination of pH by pH-metric titration.	CO1, CO3, CO5
6	Preparation of Phenol-formaldehyde and Urea-formaldehyde resin	CO4, CO5, CO6
7	To determine the iron concentration in the given water sample by Spectrophotometer using potassium thiocyanate as colour developing agent.	CO1, CO3, CO5
8	Determination of chloride content in water sample.	CO1, CO3 CO5, CO6
9	Estimation dissolved oxygen (DO) content in the given water sample by Winkler's method.	CO1, CO3, CO5
10	Determination of iron content in the given solution by Mohr's method.	CO1, CO3, CO5

Lab Experiments

11	Determination of rate constant of hydrolysis of esters.	CO3, CO5
12	To determine the Iron content in the given salt by using external indicator	CO1, CO3, CO5
13	Determination of wavelength of absorption maximum and	CO2, CO3, CO5
	colorimetric estimation of Fe3+ in solution	
14	Determination of molar absorptivity of a compound (KMnO4 or any	CO2, CO3, CO5
	water-soluble food colorant).	
15	Preparation of a nickel complex [Ni(NH3)6]Cl2 and estimation of	CO4, CO5, CO6
	nickel by complexometric titration.	
16	Synthesis of drug like Aspirin, /Paracetamol etc.	CO4, CO5, CO6

OBJECT ORIENTED PROGRAMMING

USING C++

Program Name	B. Tech CSE with Specialization in Cybersecurity				
Course Name:	Course Code	I_T_P	Crodits	Contact	
Object Oriented Programming using	Course Cour	12-1-1	Cicuits	Hours	
C++	ENCS102	3-1-0	4	40	
Type of Course:	Major-5	-			
Pre-requisite(s), if any: Basics of C programming					

Course Perspective. This course introduces students to the advanced principles and techniques of object-oriented programming (OOP) using C++. It is designed to build upon foundational programming knowledge, particularly for those who have a basic understanding of C programming. The course focuses on teaching students how to think about software development in an object-oriented way, enabling them to design and implement software solutions that are modular, extensible, and maintainable. The course is

divided into 4 modules:

- a) Foundations of Object-Oriented Programming
- b) Classes, Objects, and Advanced Features
- c) Inheritance, Polymorphism, and Software Engineering Principles
- d) File Handling, Exception Management, and Unit Testing

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the procedural and object-oriented paradigm with concepts of streams, classes, functions, data and objects.
CO 2	Analyzing dynamic memory management techniques using pointers, constructors, destructors, etc
CO 3	Applying the concept of function overloading, operator overloading, virtual functions and polymorphism
CO 4	Classifying inheritance with the understanding of early and late binding, usage of exception handling, file handling and generic programming.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Foundations of Object-Oriented Programming	No. of hours: 10			
Content Summary:					
Programming	Approaches: Procedure-Oriented Approach vs. Object-Oriented A	pproach			
Basic Concept	s of Object-Oriented Programming: Objects and Classes, Prin	ciples of OOP: Abstraction,			
Encapsulation,	nheritance, Polymorphism, Dynamic Binding and Message Passing	g			
Characteristics	of Object-Oriented Languages: Benefits and features of OOP la	nguages			
 Introduction to 	Object-Oriented Modelling Techniques: Basic concepts of mod	leling in OOP			
Unit Number: 2	Unit Number: 2Title: Classes and ObjectsNo. of hours: 10				
Content Summary					
Abstract Data	• Abstract Data Types and Classes: Concept of abstract data types, Objects and classes, attributes, and				
methods					
• C++ Class Declaration: Declaring classes in C++, State, identity, and behavior of objects					
Objects: Local	Objects and Global Objects, Scope resolution operator				

• **Functions in C++:** Friend Functions, Inline Functions

- Constructors and Destructors: Instantiation of objects, Types of constructors (default, parameterized, copy), Static Class Data, Array of Objects, Constant member functions and objects
- Memory Management Operators: New and delete operators for dynamic memory allocation.

Unit Number: 3	Title: Inheritance and Polymorphism	No. of hours: 10

Content Summary:

- Inheritance: Types of inheritance (single, multiple, hierarchical, multilevel, hybrid), Access specifiers: public, private, and protected, Abstract Classes, Ambiguity resolution using scope resolution operator and virtual base class
- Advanced Inheritance Concepts: Aggregation and composition vs. classification hierarchy, Overriding inheritance methods
- Polymorphism: Types of Polymorphism (compile-time and run-time), Function Overloading, Operator Overloading
- **Pointers and Virtual Functions:** Pointer to objects, this pointer, Virtual Functions and pure virtual functions

Unit Number: 4	Title: Advanced C++ Features	No. of hours: 10
D 1 1 D		

Content Summary:

- Strings and Streams: Manipulating strings, Streams and file handling, File streams and string streams
- Operators and Error Handling: Overloading operators, Error handling during file operations, Formatted I/O
- Generic Programming: Function templates, Class templates
- **Exception Handling:** Throwing an exception, The try block, Catching an exception, Exception objects, Exception specifications, Rethrowing an exception, Catching all exceptions

Learning Experience

Classroom Learning Experience

- 1. Interactive Lectures: Use PPTs and live coding demonstrations to explain key OOP concepts.
- 2. **Conceptual Understanding**: Cover fundamental topics like classes, objects, inheritance, and polymorphism.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on implementing OOP principles in C++.
- 4. **Theory Assignments**: Assign programming problems that reinforce OOP concepts, discussed in class.
- 5. Group Work: Collaborate on projects that require designing and implementing class structures.

- 6. **Case Studies**: Analyze real-world applications of OOP in software development.
- 7. Continuous Feedback: Implement in-class quizzes and code reviews for ongoing assessment.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign take-home projects emphasizing OOP design principles in C++.
- 2. Lab Projects: Facilitate hands-on programming tasks that apply OOP concepts to real-world scenarios.
- 3. Question Bank: Provide practice problems and resources for self-assessment.
- 4. **Online Forums**: Create platforms for students to discuss coding challenges and share solutions.
- 5. Self-Study for Case Studies: Encourage independent research on OOP best practices and design patterns.
- 6. **Collaborative Projects**: Organize group projects focused on developing software applications using OOP in C++.

Text books:

T1: Robert Lafore, "Object-Oriented Programming in C++", Sams Publishing, 4th Edition, 2004.

T2: E. Balagurusamy, "Object-Oriented Programming with C++", McGraw Hill Education, 6th Edition, 2017.

Reference Book

- 1. Schildt Herbert, "C++: The Complete Reference", Wiley DreamTech, 2005.Parasons, "Object Oriented Programming with C++", BPB Publication, 1999.
- 2. Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication, 2002.
- 3. Yashwant Kanethkar, "Object Oriented Programming using C++", BPB, 2004

Additional Readings:

Online Learning

R 1. C++ Documentation on cppreference.com

- A comprehensive reference that includes detailed documentation of C++ syntax, library functions, and features organized by version.
- Link: <u>cppreference.com</u>

OBJECT ORIENTED PROGRAMMING

USING C++ LAB

Program Name	B. Tech CSE with Specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Object Oriented	ENCS152	0-0-2	1
Programming using C++			
Lab			
Type of Course:	Major -8		
Pre-requisite(s), if any: Basics of C programming			

Defined Course Outcomes

COs	Statements
CO 1	Understanding class object concepts by using C++.
CO 2	Developing programs using inheritance and polymorphism.
CO 3	Demonstrating the significance of constructors and destructor.
CO 4	Illustrating generic classes using template concepts.
CO5	Implementing the concept of file handling.

Lab Experiments

Defined Course Outcomes

COs	Lab tasks
CO 1	Implement a simple calculator in C++ that can perform basic arithmetic operations such as

	addition, subtraction, multiplication, and division. The program should prompt the user to enter
	two numbers and an operator, then display the result. Use appropriate data types and control
	structures to handle the calculations and validate user inputs.
	Create a C++ program that checks if a given number is a prime number. The program should
CO1	prompt the user to enter a number, then use control structures and functions to determine if the
	number is prime. Display an appropriate message indicating the result.
	Implement a C++ program that sorts an array of integers using the bubble sort algorithm. The
CO1	program should allow the user to input the array elements, then use a function to sort the array in
	ascending order. Display the sorted array as the output.
	Write a C++ program to demonstrate pointer arithmetic by creating an array of integers and using
CO1	pointers to traverse and manipulate the array elements. Implement functions to calculate the sum,
	average, and maximum value of the array using pointer arithmetic.
	Write a C++ program to perform basic matrix operations such as addition, subtraction, and
CO1	multiplication. Use two-dimensional arrays to represent the matrices and implement functions for
001	each operation. Ensure the program handles matrices of appropriate sizes and displays the results
	accurately.
	Create a C++ program that generates the Fibonacci sequence up to a specified number of terms.
CO1	Use a loop and control structures to generate the sequence and store the terms in an array. Display
	the generated sequence as the output.
	Write a C++ program to evaluate a string expression containing numbers, arithmetic operators (+,
CO1	-, *, /), and parentheses. Implement a function that parses the expression and computes the result,
	considering operator precedence and parentheses.
	Write a C++ program to find all unique palindromic substrings in a given string. The function
CO1	should take a string as input and return a set of strings containing all unique palindromic
	substrings.
	Create a class Rational to represent rational numbers with attributes numerator and denominator,
CO2	implementing default, parameterized, and copy constructors, methods to add, subtract, multiply,
	and divide rational numbers, overloading the << and >> operators for input and output, and a
	friend function to compare two rational numbers.

CO2	Create a class Matrix that represents a 2D matrix with dynamic memory allocation, implementing default, parameterized constructors, and a destructor, methods to add, subtract, and multiply matrices, overloading the [] operator to access matrix elements, and inline functions for basic matrix operations.
CO2	Create a class Student with attributes studentID, name, and grades (an array of integers), implementing default, parameterized constructors, and a destructor, methods to calculate the average grade and display student details, using constant member functions to display details, and implementing dynamic memory allocation for the grades array.
CO2	Create an abstract class Shape with a pure virtual function calculateArea(), deriving classes Circle, Rectangle, and Triangle each with attributes relevant to their shapes, implementing default and parameterized constructors, methods to calculate and display the area of each shape, and an array of Shape pointers to store different shapes and calculate their areas.
CO2	Create a class InventoryItem with attributes itemID, itemName, and quantity, implementing default, parameterized, and copy constructors, methods to add, remove, and display inventory items, overloading the ++ and operators to increase and decrease item quantity, and implementing dynamic memory allocation for inventory items.
CO2	Create a class Polynomial to represent a polynomial with dynamic memory allocation for coefficients, implementing default, parameterized constructors, and a destructor, methods to add, subtract, and multiply polynomials, overloading the +, -, and * operators for polynomial operations, and friend functions to input and output polynomials.
CO3	Develop a Vehicle Management System that demonstrates different types of inheritance and polymorphism in C++. The system should manage various types of vehicles, including cars, trucks, and motorcycles, and should be able to perform operations such as adding new vehicles, displaying vehicle details, and comparing vehicles.
CO3	Create a base class Account with methods deposit() and withdraw(). Derive classes SavingsAccount and CurrentAccount from Account. Overload the deposit() and withdraw() methods in the derived classes to include additional parameters like interest rate for SavingsAccount and overdraft limit for CurrentAccount.

	Create a class ComplexNumber to represent complex numbers. Implement operator overloading
CO3	for +, -, *, and / operators to perform arithmetic operations on complex numbers. Use inheritance
	to extend the class with additional functionality for polar representation.
	Create a base class Animal with a virtual function makeSound(). Derive classes Dog and Cat from
CO3	Animal, each implementing makeSound(). Write a function playWithAnimal() that takes a pointer
005	to Animal and calls makeSound(). Demonstrate polymorphism by calling playWithAnimal() with
	pointers to Dog and Cat.
	Create a base class Person with attributes name and age. Derive classes Student and Teacher from
CO3	Person. Further derive a class TeachingAssistant from both Student and Teacher. Use a virtual
	base class to avoid ambiguity in accessing attributes of Person.
	Create a base class Vehicle with attributes make and model, and methods start() and stop(). Derive
CO3	classes Car, Truck, and Motorcycle from Vehicle. Use dynamic memory allocation (new and
005	delete operators) to create and manage objects of these classes. Implement a function to display
	details of all vehicles.
	Write a C++ program that compresses a string using the counts of repeated characters. For
CO4	Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would
CO4	Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use
CO4	Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation.
CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort
CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point
CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings.
CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs.
CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs. Implement a function that takes user input and throws an InvalidInputException if the input is not
CO4 CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs. Implement a function that takes user input and throws an InvalidInputException if the input is not valid. Use try, catch, and throw blocks to handle the exception and display an appropriate error
CO4 CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs. Implement a function that takes user input and throws an InvalidInputException if the input is not valid. Use try, catch, and throw blocks to handle the exception and display an appropriate error message.
CO4 CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs. Implement a function that takes user input and throws an InvalidInputException if the input is not valid. Use try, catch, and throw blocks to handle the exception and display an appropriate error message. Write a C++ program that reads a text file, processes the text to remove punctuation, convert to
CO4 CO4 CO4	 Write a C++ program that compresses a string using the counts of repeated characters. For example, the string "aabcccccaaa" would become "a2b1c5a3". If the "compressed" string would not become smaller than the original string, the function should return the original string. Use streams for efficient string manipulation. Write a template-based function in C++ to sort an array of any data type using the quicksort algorithm. Ensure the function works with different data types such as integers, floating-point numbers, and strings. Create a custom exception class InvalidInputException in C++ to handle invalid inputs. Implement a function that takes user input and throws an InvalidInputException if the input is not valid. Use try, catch, and throw blocks to handle the exception and display an appropriate error message. Write a C++ program that reads a text file, processes the text to remove punctuation, convert to lowercase, and count the frequency of each word. Use string streams for text manipulation and file

Implement a template-based stack class in C++ that supports basic stack operations such as push, pop, top, and isEmpty. Ensure the class works with different data types and includes appropriate exception handling for stack underflow and overflow.

Minor Project-I

Program Name	B. Tech (Computer Science and Engineering)			
COURSE NAME: Minor Project-I	COURSE CODE	L-T-P	CREDITS	
	ENSI152	0-0-0	2	
TYPE OF COURSE:	Proj-1			
PRE-REQUISITE(S), IF ANY: NA	·			

Course Perspective:

CO4

The objective of Minor Project-I for the B. Tech (Computer Science and Engineering) program is to provide students with the opportunity to apply theoretical knowledge to real-world societal problems. This course aims to develop students' ability to identify and understand complex societal issues relevant to

computer science, engage in critical thinking to formulate and analyze problems, and conduct comprehensive literature reviews to evaluate existing solutions. Through this project, students will enhance their research skills, document their findings in a well-structured manner, and effectively present their analysis and conclusions. The course fosters professional development by encouraging students to approach problems from multiple perspectives, develop innovative solutions, and improve their communication and documentation skills. Ultimately, the Minor Project-I course seeks to prepare students for future professional challenges by integrating academic knowledge with practical problem-solving experiences.

Duration: 6 weeks.

Project must focus on following aspects:

Project Requirements:

1. Understanding of Societal Problems:

Students must have a basic understanding of societal problems, the concerned domain, and relevant issues.

2. Critical Thinking and Problem Formulation:

• Students are expected to think critically about formulated problems and review existing solutions.

3. Presentation of Findings:

• Students must be able to present findings from existing solutions in an appropriate format.

4. Implementation:

• Students are not strictly expected to provide or implement these existing solutions.

Guidelines:

1. **Project Selection:**

- Choose a societal problem relevant to the field of computer science and engineering.
- Ensure the problem is specific and well-defined.

2. Literature Review:

- Conduct a thorough review of existing literature and solutions related to the problem.
- Identify gaps in existing solutions and potential areas for further investigation.

3. Analysis and Critical Thinking:

- Analyze the problem critically, considering various perspectives and implications.
- Evaluate the effectiveness and limitations of current solutions.
- 4. **Documentation:**

- Document the entire process, including problem identification, literature review, analysis, and findings.
- Use appropriate formats and standards for documentation.

5. Presentation:

- Prepare a presentation summarizing the problem, existing solutions, analysis, and findings.
- Ensure the presentation is clear, concise, and well-structured.

Evaluation Criteria for Minor Project (Out of 100 Marks):

1. Understanding of Societal Problems (20 Marks):

- Comprehensive understanding of the problem: 20 marks
- Good understanding of the problem: 15 marks
- Basic understanding of the problem: 10 marks
- Poor understanding of the problem: 5 marks
- No understanding of the problem: 0 marks

2. Critical Thinking and Analysis (30 Marks):

- Exceptional critical thinking and analysis: 30 marks
- Good critical thinking and analysis: 25 marks
- Moderate critical thinking and analysis: 20 marks
- Basic critical thinking and analysis: 10 marks
- Poor critical thinking and analysis: 5 marks
- No critical thinking and analysis: 0 marks

3. Literature Review (20 Marks):

- o Comprehensive and detailed literature review: 20 marks
- Good literature review: 15 marks
- Moderate literature review: 10 marks
- Basic literature review: 5 marks
- Poor literature review: 0 marks

4. Documentation Quality (15 Marks):

- Well-structured and detailed documentation: 15 marks
- Moderately structured documentation: 10 marks
- Poorly structured documentation: 5 marks
- No documentation: 0 marks

5. **Presentation (15 Marks):**

- Clear, concise, and engaging presentation: 15 marks
- Clear but less engaging presentation: 10 marks

- Somewhat clear and engaging presentation: 5 marks
- Unclear and disengaging presentation: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

1. Understand Societal Issues:

• Demonstrate a basic understanding of societal problems and relevant issues within the concerned domain.

2. Critical Thinking:

• Think critically about formulated problems and existing solutions.

3. Literature Review:

• Conduct comprehensive literature reviews and identify gaps in existing solutions.

4. Documentation:

• Document findings and analysis in a well-structured and appropriate format.

5. Presentation Skills:

• Present findings and analysis effectively, using clear and concise communication skills.

6. Problem Analysis:

• Analyze problems from various perspectives and evaluate the effectiveness of existing solutions.

7. Professional Development:

• Develop skills in research, analysis, documentation, and presentation, contributing to overall professional growth.

Learning Experiences

- Real-World Application: Students will apply theoretical knowledge to analyze societal problems, gaining hands-on experience in tackling real-world issues related to computer science.
- Critical Thinking and Problem Solving: By identifying, formulating, and evaluating complex problems, students will enhance their critical thinking and analytical skills.
- Research Skills: Students will conduct comprehensive literature reviews, learning to assess existing solutions and identify research gaps for future exploration.
- Effective Communication: Through structured documentation and presentations, students will develop clear and concise communication skills essential for professional settings.
- Multi-Perspective Analysis: Students will learn to evaluate problems from diverse perspectives, fostering innovative thinking and problem-solving abilities.

 Professional Development: The project encourages research, analysis, and presentation skills, preparing students for future professional challenges in the tech industry.

Applied Generative AI: Practical Tools and

Techniques

Program Name	B. Tech CSE with Specialization in Cyber Security		
Course Name:	Course Code	L-T-P	Credits
Applied Generative AI: Practical		0-0-4	2
Tools and Techniques for the			
Modern Professional			
Type of Course:	SEC-3		

Defined Course Outcomes

CO	Statements
1	Applying basic functionalities of Hugging Face and LangChain to generate text-based
	applications and automate simple tasks
2	Analyzing ethical dilemmas and create basic data visualizations using GenAI tools, automating
	standard business communications and financial predictions.
3	Creating roleplaying chatbots, automate market insights extraction, and generate social media
	content using GenAI.
4	Evaluating advanced GenAI models for automating complex tasks, generating interactive
	visualizations, and conducting ethical analyses.

Lab Experiments

	Experiment Title	Mapped
		CO/COs
Experiment 1: Introduction to Generative AI: Overview of Generative AI, Hugging		CO1
Face, a	and LangChain.	
a.	Explore basic functionalities of Hugging Face and LangChain by creating a	
	simple text generation application.	
b.	Learn to create simple prompts for GenAI models to generate various types of	
	text outputs.	
с.	Automate tasks such as scheduling and data entry using GenAI.	
d.	Perform basic data analysis and generate summary reports with GenAI.	
e.	Generate automated content such as emails and reports using GenAI.	
Experi	ment 2: Ethical Considerations and Data Visualization	CO2
a.	Create a presentation or report outlining ethical issues and potential solutions.	
b.	Develop scripts for generating data visualizations like bar charts and pie charts	
	using GenAI.	
с.	Automate business communications such as appointment reminders	
d.	Use GenAI for financial predictions based on historical data	
e.	Plan and manage tasks using GenAI for project scheduling	
Experi	ment 3: Advanced GenAI Applications and Customer Interaction	CO3
a.	Create a chatbot to handle basic customer queries.	
b.	Automate market insights extraction with GenAI.	

c. Generate presentations and reports using GenAI.	
d. Develop roleplaying chatbots for customer service training.	
e. Generate social media posts and content using GenAI.	
Complex Applications and Ethical Frameworks	CO4
Experiment 4: Explore Advanced GenAI Models and Their Applications in	
Various Industries	
Explore Advanced GenAI Models and Their Applications in Various Industries. Explore	
advanced Generative AI models such as GPT-4, DALL-E, and BERT. Develop a	
comprehensive report or presentation detailing these models and their potential uses in	
various industries, including healthcare, finance, marketing, and customer service.	
Example models like GPT-4 (OpenAI), DALL-E (OpenAI), BERT (Google), T5	
(Google), and CLIP (OpenAI) will be covered. The outcome will be a thorough	
understanding of how these models can be applied to natural language processing, image	
generation, conversational agents, and automated content creation.	
Project 1: Intelligent Email Assistant	
Problem Statement: Develop an intelligent email assistant that uses Hugging Face and	
LangChain to draft, respond to, and organize emails. This project aims to streamline	CO1,CO2,
email management for professionals by leveraging generative AI tools.	CO3,CO4
Project 2: Social Media Content Generator	
Problem Statement: Design a social media content generator that uses generative AI	
models to create posts, captions, and hashtags for different platforms. This project will	CO1,CO2,
help social media managers generate engaging content efficiently.	CO3,CO4
Project 3: Ethical AI Implementation Framework for Healthcare	
Problem Statement: Develop a comprehensive ethical AI implementation framework	
for healthcare organizations to ensure the responsible use of generative AI in medical	
applications. This project addresses the ethical challenges and ensures that AI is used in	CO1,CO2,
a fair, transparent, and accountable manner.	CO3,CO4
Project 4: Financial Report Generation System	
Problem Statement: Create a financial report generation system that uses generative AI	
models to analyze financial data and generate comprehensive reports. This project will	
assist financial analysts in making informed decisions based on accurate and data-driven	CO1,CO2,
insights.	CO3,CO4

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts in generative AI using PPTs and live demonstrations.
- 2. Conceptual Understanding: Cover topics like neural networks, GANs, and prompt engineering.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises to build and refine generative models.
- 4. Theory Assignments: Assign projects applying generative AI techniques, discussed in class.
- 5. Group Work: Collaborate on projects utilizing generative AI tools for creative applications.
- 6. **Case Studies**: Analyze real-world applications of generative AI across industries.
- 7. Continuous Feedback: Implement quizzes and peer reviews to assess understanding.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying generative AI techniques to practical scenarios.
- 2. Lab Projects: Facilitate hands-on activities using generative AI tools to create models and content.
- 3. Question Bank: Provide practice problems and resources for self-assessment.
- 4. **Online Forums**: Create platforms for discussing generative AI challenges and solutions.
- 5. Self-Study for Case Studies: Encourage independent research on advancements in generative AI.
- 6. **Collaborative Projects**: Organize group projects focused on innovative applications of generative AI.

Text Books:

- "Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster
- "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron

Online References

General Introduction to Generative AI

- 1. OpenAI Blog: Articles and research updates on advancements in AI OpenAI Blog
- 2. **DeepMind Publications**: Research and analysis on the latest AI technologies <u>DeepMind</u> <u>Research</u>

Tools and Libraries

- 1. **Hugging Face Documentation**: Comprehensive guide and API references for using transformer models <u>Hugging Face Docs</u>
- 2. LangChain Documentation: Tools and libraries for building language applications LangChain <u>GitHub.</u>

Ethical Frameworks for AI

- 1. AI Ethics Guidelines by the European Commission: Framework for trustworthy AI Ethics Guidelines for Trustworthy AI
- 2. Partnership on AI: Research and partnership initiatives on AI ethics Partnership on AI

Prompt Engineering and Usage

- 1. **Practical Prompt Engineering Guide by OpenAI**: Guidelines on effective prompt engineering -<u>Prompt Engineering with OpenAI</u>
- 2. **Prompt Engineering Workshop**: Online courses and tutorials on prompt engineering <u>Prompt Engineering Course</u>

SEMESTER: III

DISCRETE MATHEMATICS

Program Name	B. Tech CSE with specialization in Cybersecurity			
Course Name: Discrete Mathematics	Course Code	L-T-P	Credits	Contact Hours
	ENCS203	3-1-0	4	40
Type of Course:	Major-9	·		
Pre-requisite(s), if any: Basic of Mathematics				

Course Perspective. In this comprehensive course on Discrete Mathematics, students will delve into foundational mathematical concepts essential for computer science and problem-solving. They will explore set theory, logic, relations, and graph theory, gaining proficiency in modeling and analyzing discrete structures. By mastering combinatorics, students will tackle counting problems and optimization techniques. Additionally, they will delve into number theory, understanding cryptographic algorithms and their security implications. Overall, this course equips learners with the analytical skills needed to address complex computational challenges and lays a solid groundwork for further studies in computer science and mathematics

Course Outcomes (COs).

COs	Statements
CO 1	Applying set theory concepts, analyze logical expressions, and use mathematical induction in proofs.
CO 2	Understanding Model relations, understand graph theory basics, and solve problems related to graphs.
CO 3	Analyzing Count combinatorial objects, explore discrete structures, and apply optimization techniques
CO 4	Utilizing number theory concepts and understand cryptographic algorithms.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

		Title: Set Theory and Logic	
Un	it Number: 1		No. of hours: 10
Set	t Theory		
1.	Basic Concepts:		
	• Notations	and terminology (union, intersection, complement)	
	• Types of s	ets (finite, infinite, empty, universal)	
	• Multisets	(elements with multiplicity)	
2.	Ordered Pairs an	d Cartesian Product:	
	• Definition	of ordered pairs	
	• Properties	of Cartesian product	
3.	Set Algebra and l	Proofs:	
	• Set operat	ions (union, intersection, difference)	
	• Proofs of s	set identities (De Morgan's laws, distributive properties))
Lo	gic		
	1. Propositional	Logic:	
	• Syntax	x and semantics	
	• Truth	tables for logical connectives (AND, OR, NOT)	
	• Tauto	logies and contradictions	
	2. Predicate Log	gic:	
	• Quant	ifiers (universal and existential)	
	• Predic	rate calculus	
	• Proofs	s using mathematical induction	
Un	it Number: 2	Title: Relations and Graph Theory	No. of hours: 10
Re	lations		
1.	Representation a	nd Properties:	
	• Matrices,	graphs, and directed graphs	
	• Reflexive.	symmetric, and transitive relations	
2.	Equivalence Rela	tions and Partitions:	
	• Equivalen	ce classes	

- Equivalence partitions
- 3. Graph Theory Basics:
 - Definitions (vertices, edges, degree)
 - Types of graphs (simple, directed, weighted)
 - Graph representations (adjacency matrix, adjacency list)

4. Graph Algorithms:

- Depth-First Search (DFS)
- Breadth-First Search (BFS)
- Shortest path algorithms (Dijkstra's, Bellman-Ford)

Ur	Jnit Number: 3Title: Combinatorics and Discrete StructuresNo. of hours: 10				
Co	Combinatorics				
1.	Count	ting Principl	es:		
	0	Product rul	e, sum rule		
	0	Permutatio	ns and combinations		
	0	Binomial c	oefficients		
2.	Inclus	sion-Exclusio	on Principle:		
	0	Solving pro	oblems with overlapping sets		
3.	Gener	ating Funct	ions:		
	0	Formal pov	ver series for combinatorial problems		
	0	Application	ns in counting		
Di	screte S	Structures			
	1. T i	rees and Rec	urrence Relations:		
		• Tree pr	operties (rooted, binary, spanning trees)		
		• Solving	g linear recurrence relations		
	2. Fi	nite State M	achines and Regular Languages:		
		o Determ	inistic Finite Automata (DFA)		
		o Regula	r expressions		
		o Regula	r languages		
	3. F o	ormal Langu	ages and Grammars:		
		• Contex	t-free grammars		
		• Choms	ky hierarchy		

Unit Number: 4	Title:	Number Theory and Cryptography	No. of hours: 10	
Number Theory				
1. Divisibility an	d Modu	lar Arithmetic:		
o Greate	st comm	on divisor (GCD)		
o Modul	ar invers	es		
• Euler's	s totient t	function		
2. Congruences a	and Fer	mat's Little Theorem:		
• Solving	g congru	ences		
o Applic	ations in	cryptography		
3. RSA Encrypti	on:			
• Key ge	eneration			
• Encryp	otion and	decryption		
Cryptography				
1. Symmetric-Ke	ey Crypt	tography:		
o Data E	Incryptio	n Standard (DES)		
o Advan	ced Enci	yption Standard (AES)		
2. Public-Key Ci	ryptogra	phy:		
• RSA a	lgorithm			
o Diffie-	Hellman	key exchange		
3. Digital Signat	ures and	Hash Functions:		
• Ensuri	ng data i	ntegrity		
o Crypta	nalysis t	echniques		

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key concepts in discrete mathematics using PPTs and examples.
- 2. Conceptual Understanding: Cover topics like logic, set theory, combinatorics, and graph theory.
- 3. Problem-Solving Sessions: Conduct in-class exercises focused on solving discrete math problems.
- 4. Theory Assignments: Assign theoretical problems, with solutions discussed in class.
- 5. Group Work: Collaborate on projects involving applications of discrete mathematics.

- 6. **Case Studies**: Analyze real-world applications of discrete math in computer science and cryptography.
- 7. Continuous Feedback: Implement quizzes and feedback sessions to assess understanding.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign take-home problems emphasizing discrete math concepts.
- 2. Lab Projects: Facilitate hands-on activities applying discrete math to programming or algorithms.
- 3. Question Bank: Provide practice problems and resources for self-assessment.
- 4. **Online Forums**: Create platforms for discussing discrete math problems and solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on applications of discrete mathematics.
- 6. **Collaborative Projects**: Organize group projects focused on real-world problems using discrete math.

Textbooks

- Discrete Mathematics, Seymour Lipschutz and Marc Lipson, Schaum's Outline Series, 3rd Edition, 2009.
- 2. Discrete Mathematics, Richard Johnsonbaugh, Pearson, 8th Edition, 2017
- 3. Discrete Mathematics and Its Applications, Kenneth H. Rosen, McGraw Hill

References

R 1. Elements of Discrete Mathematics, C. L Liu, McGraw-Hill Inc, 1985. Applied Combinatorics, Alan Tucker.

R 2. Concrete Mathematics, Ronald Graham, Donald Knuth, and Oren Patashnik, 2nd Edition - Pearson Education Publishers.

DATA STRUCTURES

Program Name B. Tech CSE with specialization in Cybersec		ırity		
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Data Structure	ENCS205	3-1-0	4	40
Type of Course:	Major-10	-	-	
Pre-requisite(s), if any: Basics of Computer Programming				

Course Perspective: This course provides a comprehensive introduction to data structures and algorithms, essential components in the field of computer science that are critical for designing efficient software systems. Data structures serve as the building blocks for data management and organization, crucial for implementing effective algorithms that solve real-world computational problems. The course is structured to not only impart theoretical knowledge but also practical skills through hands-on implementation and problem-solving.

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding and apply basic and advanced data structures.
CO 2	Analyzing and compare various sorting and searching algorithms.
CO 3	Designing and utilize algorithms for advanced data manipulation.
CO 4	Implementing and evaluate algorithms using hashing and advanced algorithmic techniques.
CO 5	Developing applications that integrate data structures with file I/O operations and handle data dynamically.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Foundations of Data Structures	No. of hours: 9			
Introduction: Abstract	Data Type, Elementary Data Organization.				
Measuring efficiency of	f an Algorithm: Time and Space Complexity Analy	sis, Asymptotic notations.			
Arrays: Single and Mu	ltidimensional Arrays, Representation of Arrays: R	ow Major Order, and Column			
Major Order, Applicatio	n of arrays, Sparse Matrices.				
Unit Number: 2	Title: Linear Data Structures	No. of hours: 11			
Linked lists: Array and	Dynamic Implementation of Single Linked Lists, I	Doubly Linked List, Circularly			
Linked List, Operations	s on a Linked List. Insertion, Deletion, Traversa	l, Polynomial Representation,			
Addition and Multiplicat	tion.				
Stacks: Stack operations	s: Push & Pop, Array and Linked list implementation	n of Stack, Applications: Prefix			
and Postfix Expressions,	Evaluation of postfix expression, Recursion.				
Queues: Queue operation	ons: Create, Add, Delete, full and empty queues, Ar	ray and linked implementation			
of queues, Dequeue, Cire	cular queues and Priority Queue.				
Unit Number: 3	Unit Number: 3 Title: Trees and Graphs No. of hours: 10				
Searching: Sequential s	earch, Binary Search.				
Sorting: Insertion Sort,	Selection, Bubble Sort, Quick Sort, Merge Sort, I	Heap Sort, Radix Sort, Bucket			
Sort, Shell Sort.					
Hashing: Hash Function	n, Hash Table, Collision Resolution Strategies.				
Unit Number 1	Title: Advanced Sorting, Searching, and	No. of hours: 10			
Ollit Nulliber . 4	Algorithm Techniques	100. 01 H0015. 10			
Trees: Basic terminolo	gy, Binary Trees, Array and linked list implemen	tation, Types of Binary Tree,			
Extended Binary Trees, Algebraic Expressions, Tree Traversal algorithms: Inorder, Preorder and					
Postorder, Threaded Binary trees, Search, Addition and deletion of an element in a binary tree, AVL Trees,					
Heaps, B Trees, B+ Trees and their applications, Evaluating an expression tree					
Graphs: Representation	n (Matrix and Linked), Traversals, Shortest path	, Topological sort. Dijkstra's			
Algorithm, Floyd Warshall's Algorithm, Minimum Spanning Tree Algorithms (Kruskal's Algorithm,					
Prim's Algorithm).					

L1= Remember, L2= Understand, L3= Apply, L4= Analyze, L5= Evaluate and L6= Create Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures:** Introduce key concepts in data structures using PPTs and coding demonstrations.
- 2. **Conceptual Understanding**: Cover topics like arrays, linked lists, stacks, queues, trees, and graphs.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on implementing and using various data structures.
- 4. **Theory Assignments**: Assign theoretical problems that reinforce data structure concepts, discussed in class.
- 5. Group Work: Collaborate on projects that require designing and optimizing data structures.
- 6. Case Studies: Analyze real-world applications of data structures in software development.
- 7. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding and coding practices.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects that apply data structure concepts to practical problems.
- 2. Lab Projects: Facilitate hands-on programming tasks using data structures in real-world scenarios.
- 3. Question Bank: Provide practice problems and resources for self-assessment on data structures.
- 4. Online Forums: Create platforms for discussing data structure challenges and solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on efficient data structure implementations.
- 6. **Collaborative Projects**: Organize group projects focused on developing applications using various data structures.

Textbooks

- 1. Seymour Lipschutz, "Data Structures", 2nd Edition, 2015
- 2. Aaron Tanenbaum, "Data Structures Using C", 2nd edition, 2016
- 3. Ellis Horowitz and Sartaj Sahni, "Fundamentals of data structures" 2nd edition, 2017
- 4. Data Structures Using C (2nd. ed.). Reema Thareja. Oxford University Press, Inc., USA. 2018.

References

- 1. E. Horowitz and S. Sahani, "Fundamentals of Data Structures", Galgotia Book source Pvt. Ltd.
- 2. Data Structures & Algorithms in Python by John Canning, Alan Broder, Robert Lafore Addison-Wesley Professional ISBN: 9780134855912.
- 3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

4. Problem Solving with Algorithms and Data Structures Using Python" by Brad Miller and David Ranum.

Additional Readings:

Online References for Learning Data Structures

I) MIT OpenCourseWare - Introduction to Algorithms (6.006)

- a. Free course materials from MIT's undergraduate course on algorithms, which includes data structures. Lectures, assignments, and exams are available online.
- b. Link: MIT OpenCourseWare Introduction to Algorithms

II) LeetCode - Data Structures

- a. A platform for practicing coding problems. It provides numerous problems related to data structures, complete with solutions and discussions.
- b. Link: <u>LeetCode Data Structures</u>

DATA STRUCTURES LAB

Program Name	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Data Structure lab	ENCS253	0-0-2	1
Type of Course:	Major-12		
Pre-requisite(s), if any: Basics of Computer Programming			

Defined Course Outcomes

COs	
CO 1	Analyzing and evaluate the time and space complexity of algorithms for various scenarios, demonstrating an understanding of asymptotic notations.
CO 2	Implementing and manipulate single-dimensional and multi-dimensional arrays, including operations like insertion, deletion, and traversal.
CO 3	Developing and perform operations on linked lists (single, doubly, and circularly linked), stacks, and queues using both array and linked list representations.
CO 4	Designing and analyze the efficiency of different sorting and searching algorithms, as well as implement and compare advanced data structures like binary search trees, AVL trees, and graph algorithms.

LAB EXPERIMENTS

S.N	Experiment Title	Mapped
		CO/COs
1	Given an array of integers, perform the following operations: reverse the array,	CO1
	find the maximum and minimum elements, and calculate the sum and average of	
	the elements. Implement functions to perform each operation and ensure the time	
	complexity is optimal.	
2	Given an array, rotate the array to the right by k steps, where k is non-negative.	CO1
	Implement the rotation in-place with $O(1)$ extra space.	
3	Write a function to merge two sorted arrays into a single sorted array. The	CO1

	function should handle arrays of different lengths and ensure the final array is	
	sorted.	
4	Given an array containing n distinct numbers taken from 0, 1, 2,, n, find the	CO1
	one that is missing from the array. Implement an efficient algorithm with $O(n)$	
	time complexity.	
5	Find the kth largest element in an unsorted array. Note that it is the kth largest	CO1
	element in sorted order, not the kth distinct element. Implement an efficient	
	algorithm with O(n log n) time complexity.	
6	Given an unsorted array of integers, find the length of the longest consecutive	CO1
	elements sequence. Your algorithm should run in O(n) time complexity.	
7	Suppose an array sorted in ascending order is rotated at some pivot unknown to	CO1
	you beforehand. Write a function to search for a target value in the array. If found,	
	return its index; otherwise, return -1. Your algorithm should run in O(log n) time	
	complexity.	
8	Given an integer array nums, find the contiguous subarray (containing at least one	CO1
	number) which has the largest sum and return its sum. Implement an efficient	
	algorithm with O(n) time complexity using Kadane's Algorithm.	
9	Write a function to move all zeros to the end of an array while maintaining the	CO2
	relative order of the non-zero elements. Implement the function with O(n) time	
	complexity and O(1) extra space.	
10	Write a class to implement a singly linked list with methods to insert an element	CO2
	at the head, insert an element at the tail, delete an element by value, and traverse	
	the list to print all elements.	
11	Using linked lists, write a function to add two polynomials. Each node in the	CO2
	linked list represents a term in the polynomial with its coefficient and exponent.	
	Implement the function to handle polynomials of different degrees.	
12	Implement a doubly linked list with methods to insert an element at the head,	CO2
	insert an element at the tail, delete an element by value, and reverse the list.	
	Ensure that all operations handle edge cases appropriately.	
13	Create a circular linked list with methods to insert an element, delete an element	CO2
	by value, and traverse the list. Ensure that the list maintains its circular nature	
	after each operation.	
14	Write a function to evaluate a given postfix expression using a stack. The function	CO2

	should support basic arithmetic operations (+, -, *, /) and handle invalid	
	expressions gracefully.	
15	Implement a stack using a singly linked list with methods for push, pop, and peek	CO2
	operations. Ensure that the stack handles edge cases, such as popping from an	
	empty stack, appropriately.	
16	Write a function to convert an infix expression to a postfix expression using a	CO2
	stack. The function should handle parentheses and operator precedence correctly.	
17	Create a circular queue using an array with methods for enqueue, dequeue, and	CO2
	checking if the queue is empty or full. Ensure that the circular nature of the queue	
	is maintained after each operation.	
18	Given a sorted array that has been rotated at an unknown pivot, write a function	CO2
	to search for a target value in the array. If the target exists, return its index;	
	otherwise, return -1. Implement an efficient algorithm with O(log n) time	
	complexity using binary search.	
19	Find the kth largest element in an unsorted array. Note that it is the kth largest	CO2
	element in sorted order, not the kth distinct element. Implement an efficient	
	algorithm with O(n log n) time complexity.	
20	Given a collection of intervals, merge all overlapping intervals and return an array	CO2
	of the non-overlapping intervals that cover all the intervals in the input.	
	Implement an efficient algorithm with O(n log n) time complexity.	
21	Given a non-empty array of integers, return the k most frequent elements.	CO2
	Implement an efficient algorithm with O(n log k) time complexity.	
22	Given an array of integers that is already sorted in ascending order, find two	CO2
	numbers such that they add up to a specific target number. Return the indices of	
	the two numbers (1-indexed) as an integer array. Implement an algorithm with	
	O(n) time complexity.	
23	Given an array that has been rotated at an unknown pivot, write a function to	CO3
	search for a target value in the array. Implement the solution using binary search	
	with O(log n) time complexity.	
24	Write a function to merge k sorted linked lists and return it as one sorted list.	CO3
	Implement an efficient solution using a min-heap with O(N log k) time	
	complexity, where N is the total number of nodes.	

	Implement the solution with O(n log k) time complexity using a min-heap and a	
	hash map.	
26	Implement various sorting algorithms including Quick Sort, Merge Sort, Heap	CO3
	Sort, and analyze their performance on different input sizes. Ensure the	
	implementation handles edge cases such as duplicate values and nearly sorted	
	arrays.	
27	Given preorder and inorder traversal of a tree, construct the binary tree.	CO4
	Implement an efficient algorithm with O(n) time complexity using a hash map to	
	store the index of elements in the inorder traversal.	
28	Implement Dijkstra's algorithm to find the shortest path from a source vertex to	CO4
	all other vertices in a weighted graph. Use both adjacency matrix and adjacency	
	list representations for the graph. Ensure the algorithm handles negative weights	
	appropriately.	
29	Implement Kruskal's algorithm to find the minimum spanning tree of a graph.	CO4
	Use a union-find data structure to detect cycles and ensure the algorithm runs in	
	O(E log E) time complexity.	
30	Given a binary tree representing an arithmetic expression, write a function to	CO4
	evaluate the expression and return the result. Each leaf node is an operand, and	
	each internal node is an operator. Implement an efficient recursive algorithm.	

JAVA PROGRAMMING

Program Name	B. Tech CSE with s	pecialization i	n Cybersecurity	
COURSE NAME: JAVA PROGRAMMING	COURSE CODE	L-T-P	CREDITS	Contact Hours
	ENCS201	4-0-0	4	40
TYPE OF COURSE:	Major-12			
PRE-REQUISITE(S), IF ANY: C PROGRAMMING				

Course Perspective. This course provides a comprehensive introduction to Java, one of the most popular and widely used programming languages in the world, particularly known for its portability across platforms from mainframe data centers to smartphones. The "Java Programming" course is meticulously designed to introduce students to the core concepts of object-oriented programming using Java, covering everything from basic constructs to advanced programming features. The curriculum is structured to not only impart theoretical knowledge but also to enhance practical skills through extensive lab sessions, thereby preparing students for real-world software development. The course is divided into 4 modules:

- a) Introduction to Java and OOP
- b) Inheritance and Polymorphism (Abstract Class, Packages, and Interfaces)
- c) Exception Handling, Multithreading and Wrapper Class
- d) I/O Stream, File Handling, and Collections

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Applying Java fundamentals and basic constructs to write Java programs.
CO 2	Designing object-oriented solutions using classes, objects, inheritance, and polymorphism.
CO 3	Utilizing interfaces and packages for code structure and reusability.
CO 4	Implementing error handling with try-catch-finally and custom exceptions.

CO 5	Designing multithreaded applications using synchronization.		
CO 6	Performing file I/O, work with Java Collections Framework, and manipulate data using collections		

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Java and OOP	No. of hours: 10		
Content:				
Introduction to Ja	va –			
Features, and Impo	rtance, Java Virtual Machine, Byte Code; Keywords, consta	ants, variables and Data Types,		
Operators and Expr	ressions, Type casting and conversion;			
Java Control Stru	cture - Decision making – if, if-else, if-else-if ladder, nes	ted if, switch-case, Loop – do,		
while, for, jump sta	tements – break and continue;			
Simple Input and	Simple Input and Output - Scanner Class; Arrays Handling - Single and Multi-dimensional, Referencing			
Arrays Dynamicall	у;			
Java Strings: String class, Creating & Using String Objects, Manipulating Strings, String Immutability &				
Equality, Passing Strings To & From Methods.				
OOP Paradigm: Features of OOP, Class and Object in Java: Creating Classes and Objects. Defining Data				
Members and Member Methods, Overloading Member Methods, Static Members, this Keyword.				
Constructors: defau	lt, parameterized and copy constructors.			
Title: Inheritance and Polymorphism (Abstract				
Unit Number: 2	Class, Packages, and Interfaces)	No. of nours: 10		
Content:				
Access Specifies, Introduction to Inheritance – Derived Class and Super class, super Keyword;				
Types of inheritance – simple, multilevel, multilevel, hierarchical, and hybrid;				
Polymorphism – Static (Method overloading), Dynamic (Method Overriding);				
Final Class and Method, finalize keyword, Garbage Collection;				

Abstract Method and Abstract Class. Interfaces - Defining an Interface, Implementing an Interface;

Packages - Creating Package, Naming a Package, Using Package Members, Extending Interfaces and Packages, Package and Class Visibility.

Unit Number: 3	Title: Exception Handling, Multithreading and	No. of hours: 10	
	wrapper class		
Content:			
Exception Handlin	g - Definition, Dealing with Errors, The Classification of H	Exceptions, Declaring Checked	
Exceptions, Throw an Exception, Creating Exception Classes, Catching Exceptions, finally clause;			
Multithreaded Programming - Fundamentals, Java thread model: priorities, synchronization, messaging,			
thread classes, Runnable interface, inter thread Communication, suspending, resuming, and stopping threads.			
Wrapper Classes - Autoboxing/Unboxing, Enumerations.			
Unit Number: 4Title:I/O Stream, File Handling, and CollectionsNo. of hours: 10			
Content:			

File Handling: File Class Methods, Reading from a File, Writing to a File, Buffered I/O, Character Streams, Byte Streams, File Input/Output Stream, FileReader, FileWriter, BufferedWriter, BufferedReader, FileInputStream, FileOutputStream, File Navigation, File Permissions, Directory Operations, File and Directory Attributes

Java Collections Framework: Introduction to Java Collections Framework

Collection Interfaces: List (ArrayList, LinkedList, Vector), Set (HashSet, LinkedHashSet, TreeSet), Queue (PriorityQueue), Map (HashMap, LinkedHashMap, TreeMap), Iterators, Comparable and Comparator Interfaces, Sorting Collections, Generics in Collections

Working with Collections: Adding, Removing, Searching Elements, Iterating Elements

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key Java concepts using PPTs and live coding demonstrations.
- 2. **Conceptual Understanding**: Cover topics like object-oriented programming, exception handling, and Java APIs.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on coding challenges and algorithm implementation.
- 4. **Theory Assignments**: Assign programming problems that reinforce Java concepts, discussed in class.
- 5. Group Work: Collaborate on projects requiring teamwork in Java application development.
- 6. **Case Studies**: Analyze real-world applications of Java in software development and enterprise solutions.

- 7. **Continuous Feedback**: Implement quizzes and code reviews to provide ongoing assessment and improvement.
- 8.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying Java programming concepts to practical problems.
- 2. Lab Projects: Facilitate hands-on programming tasks that apply Java in real-world scenarios.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment in Java.
- 4. **Online Forums**: Create platforms for discussing Java programming challenges and solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on Java best practices and frameworks.
- 6. **Collaborative Projects**: Organize group projects focused on developing Java applications and systems.

Text Book

- 1. HERBERT SCHILDT, —JAVA THE COMPLETE REFERENCE, ORACLE PRESS.
- 2. CAY S. HORSTMANN, -CORE JAVA VOLUME I FUNDAMENTALS, PEARSON.

Additional Readings:

Online Learning Resources

1. Oracle Java Tutorials

- The official tutorials from Oracle, which owns Java, are a great starting point. These cover the basics and advanced features of Java.
- Link: Oracle Java Tutorials

2. Codecademy

- Codecademy offers an interactive Java programming course that includes exercises and projects to help beginners understand Java from scratch.
- Link: <u>Codecademy Java Course</u>

3. Java Code Geeks

- A community-driven site that offers free Java tutorials, articles, and examples. It's a valuable resource for practical tips and best practices.
- Link: Java Code Geeks

4. LeetCode

- Excellent for practicing Java coding problems, LeetCode helps in enhancing problemsolving skills in Java, which is crucial for technical interviews.
- Link: <u>LeetCode</u>

JAVA PROGRAMMING LAB

Program Name	B. Tech CSE with specialization in Cybersecurity		
COURSE NAME:	COURSE CODE	L-T-P	CREDITS
JAVA PROGRAMMING LAB	ENCS251	0-0-2	1
TYPE OF COURSE:	Major-13		
PRE-REQUISITE(S), IF ANY: basic working knowledge of C++ programming will be an added			
advantage			

DEFINED COURSE OUTCOMES

COS	
CO 1	Demonstrating the use of primitive data types, type casting, and basic input/output operations in Java.
CO 2	Implementing control structures such as conditional statements and loops to perform arithmetic operations and generate sequences.
CO 3	Creating and manipulate arrays and demonstrate basic inheritance, polymorphism, and class hierarchies in Java applications.
CO 4	Developing and test advanced Java applications using multithreading, file handling, collections, and exception handling to solve real-world problems.

LAB EXPERIMENTS

	Lab Task	MAPPED
		CO/COS
1	A Java Application that manages a small library system	CO1
2	A Java Application to manage a simple bank account system	CO1
3	A Java class hierarchy for a simple educational institution system	CO2
4	A system for managing different types of vehicles in a rental service	CO2
4	A Java Application for a basic shape drawing application	CO3
5	A Java multithreaded application that simulates a banking system	CO3
6	A file management system that supports operations such as reading, writing,	CO4

	copying, and navigating files and directories	
7	A contact management system that utilizes different data structures like Lists, Sets, Queues, and Maps	CO4

VAC II

Program Name	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code:	L-T-P	Credits	Semester
Community Engagement Service	VAC II	2-0-0	2	II

Type of Course:	Value Added Course
Duration	30 Hrs

Course Objectives:

- To engage students in meaningful social service activities.
- To develop socially responsible engineers.
- To apply technical and non-technical skills for the benefit of society.
- To foster community engagement and support.

Course Outline:

1. Introduction

Overview of the Course: The **Community Engagement Service (VAC II)** course at K.R. Mangalam University is designed to integrate social responsibility with technical education. This 30-hour value-added course encourages students to engage in meaningful social service activities, applying their technical and non-technical skills to benefit various sections of society. Through hands-on involvement, students will develop a deeper understanding of community needs and contribute positively to societal development.

Importance of Social Service in Engineering Education: Incorporating social service into technical education is crucial for nurturing well-rounded professionals who are not only technically proficient but also socially conscious. By participating in community-oriented projects, students can bridge the gap between theory and practice, gaining real-world experience that enhances their problem-solving skills. Engaging in social service fosters empathy, teamwork, and leadership qualities, which are essential attributes for successful engineers dedicated to making a positive impact on society.

Expectations and Requirements: Students enrolled in this course are expected to actively participate in chosen social service activities, dedicating at least 30 hours over weekends. They must document their engagement through video clips and photographs, maintaining a detailed logbook of their activities. Additionally, students are required to prepare a comprehensive report and a 10-minute video presentation demonstrating their engagement, learning experiences, and the impact of their initiatives. Evaluation will be based on the quality and relevance of documentation, the depth of the report, and the effectiveness of the video presentation in showcasing their contributions and outcomes.

2. Possible Engagement Activities

Students can choose from a variety of activities, including but not limited to:

Development and Innovation

Develop Innovative Tools: Create solutions such as mobile apps and web-based platforms to address societal needs.

- 1. Lever-Powered Wheelchairs: Develop control applications to enhance mobility for differentlyabled individuals.
- 2. **Assistive Devices**: Design simple devices using basic sensors to improve daily living for people with disabilities.
- 3. **Environmental Monitoring**: Build introductory systems using Arduino and web dashboards to raise community awareness about air and water quality.
- 4. **Eco-Friendly Practices**: Create web applications that promote sustainable living and track user participation.
- 5. **Waste Management**: Implement basic data management systems for efficient waste management in local communities.
- 6. **Energy Optimization**: Develop algorithms to optimize energy consumption in households and public buildings.
- 7. **Water Quality Monitoring**: Design systems with sensors and mobile apps to ensure safe drinking water in rural areas.
- 8. **Smart Agriculture**: Create tools using microcontrollers to support farmers with automated irrigation and soil condition monitoring.
- 9. **Cybersecurity**: Implement basic practices to protect sensitive data in sustainable technology applications.
- 10. **Health Tracking**: Develop simple mobile applications to monitor fitness and wellness metrics, benefiting public health initiatives.
- 11. **Recycling Sorters**: Create introductory computer vision projects for sorting recyclables to aid municipal recycling programs.
- 12. Environmental Data Analysis: Conduct basic projects on environmental data sets to identify trends and propose solutions for urban planning and conservation efforts.
- 13. Chemical Analysis Programs: Create Python programs to support educational institutions.
- 14. Electronic Circuits for Physics: Develop circuits to aid students in experiments.
- 15. Engineering Mathematics Tools: Design simulation tools to assist in academic research.

Education and Mentorship

- 1. Tutoring and Mentorship: Provide tutoring and mentorship to underprivileged children.
- 2. Day Camps: Organize and run day camps for low-income children during weekends.
- 3. Educational Opportunities for Incarcerated Individuals: Volunteer to provide educational programs and mentorship to incarcerated individuals.

4. **Skill Development Workshops**: Conduct workshops to teach various skills to children based on students' expertise.

Community Service and Development

- 1. Local Charities and Community Projects: Volunteer with local charities to support community development projects.
- 2. Entrepreneurship Initiatives: Help villagers improve their livelihood through entrepreneurship initiatives.
- 3. **Women Empowerment Programs**: Empower women through skill enhancement, awareness programs, and entrepreneurship training.
- 4. **Digital Awareness Programs**: Conduct programs on cybersecurity and social media safety to protect against digital frauds.

Cultural and Traditional Skills

- 1. **Traditional Skills Learning**: Spend time with villagers to learn traditional skills such as pottery, carpentry, weaving, etc.
- 2. Artisan Marketing Assistance: Help artisans market their crafts through digital platforms and e-commerce.

Technology for Social Good

- 1. **Problem-Solving with Technology**: Use technology to solve specific problems faced by certain sections of society, such as developing apps for community support.
- 2. **Community Development Tools**: Create tools and resources to assist in community development and problem-solving.

Healthcare Domain

- 1. **Health Awareness Campaigns**: Organize campaigns to raise awareness about hygiene, nutrition, and preventive healthcare.
- 2. **Medical Camp Assistance**: Volunteer at medical camps to support healthcare delivery in underserved areas.
- 3. **Mental Health Support**: Conduct workshops and support groups focusing on mental health awareness and assistance.
- 4. **Telemedicine Services**: Assist in setting up and running telemedicine services for remote communities.

Print Media and Social Platforms

1. **Community Newsletters**: Create and distribute newsletters to share important community news and stories.

2. Social Media Campaigns: Run social media campaigns to raise awareness on various social issues and promote community initiatives.

Other Possible Domains

- 1. **Environmental Conservation**: Participate in tree planting drives, clean-up campaigns, and conservation projects.
- 2. **Disaster Relief Support**: Assist in disaster relief efforts, providing aid and support to affected communities.
- 3. **Animal Welfare**: Volunteer at animal shelters, support animal rescue operations, and promote animal welfare initiatives.
- 4. **Cultural Preservation**: Work on projects to preserve and promote local cultural heritage and traditions.

3. Documentation and Proof of Engagement

- Students must provide relevant proofs in the form of video clips and day-wise photographs.
- Maintain a logbook detailing the hours spent and activities undertaken.

4. Reporting and Presentation

- Prepare a detailed report on the engagement activities.
- Create a 10-minute video demonstrating the overall engagement, learning experiences, and impact.
- The video should include testimonials from beneficiaries showcasing the outcomes and benefits.

Evaluation Criteria:

The evaluation of the VAC will be based on the following rubrics, totaling 100 marks:

Criteria	Marks
Relevant Proofs (video clips, day-wise photographs)	20
Detailed Report	30
Video Presentation (10 minutes)	50
- Demonstration of overall engagement	
- Learning experiences	
- Initiative impact on society	
- Testimonials from beneficiaries	

Rubrics for Evaluation:

Evaluation	Excollent (10)	C ord (7, 0)	Satisfactory	Needs	
Criteria	Excellent (10)	Good (7-9)	(5-6)	Improvement (1-4)	
Relevant Proofs	Comprehensive and well-documented	Adequately documented	Basic documentation provided	Inadequate or missing documentation	
Detailed Report	Thorough, well- structured, insightful	Clear and informative	Basic structure and content	Lacks detail and structure	
Video Presentation	Highly engaging and impactful	Engaging and informative	Basic engagement and clarity	Lacks engagement and clarity	
Demonstration of Engagement	Clearly demonstrates active and meaningful engagement	Shows active involvement	Demonstrates some involvement	Lacks clear demonstration of involvement	
Learning Experiences	Profound insights and reflections	Clear insights and reflections Basic reflections		Lacks depth in reflections	
Initiative Impact on Society	Significant positive impact shown	Evident positive impact	Some positive impact	Minimal or unclear impact	
Testimonials from Beneficiaries	Strong and compelling testimonials	Clear and supportive testimonials	Basic testimonials	Lack of or weak testimonials	

Implementation Plan:

- 1. **Orientation Session:** Introduce students to the VAC and explain the objectives and expectations.
- 2. Activity Selection: Students select their preferred engagement activities.
- 3. **Engagement Phase:** Students actively participate in the chosen activities, documenting their involvement.
- 4. **Reporting Phase:** Students prepare their detailed report and video presentation.
- 5. **Evaluation:** Faculty evaluates students based on the provided rubrics.
- 6. Feedback Session: Provide constructive feedback to students for continuous improvement.

Conclusion:

This Value-Added Course aims to instill a sense of social responsibility in engineering students, encouraging them to apply their skills for the betterment of society. By engaging in various social service

activities, students will gain valuable experiences that complement their technical education, fostering holistic development and community engagement.

Student Report Template

Title Page:

- Course Title: Community Engagement Service (VAC-II)
- Student Name:
- Enrollment Number:
- Semester: II
- Program: B.Tech (CSE) including all Specializations, BCA, B.Sc
- Date:

1. Introduction:

- Overview of the Course: Provide a brief overview of the Community Engagement Service (VAC II) course, highlighting its purpose and importance.
- Importance of Social Service in Engineering Education: Discuss why incorporating social service into engineering education is crucial for developing well-rounded professionals.
- Expectations and Requirements: Outline the course expectations, including participation, documentation, and reporting requirements.

2. Chosen Activity:

- Activity Name: State the name of the chosen social service activity.
- Description of the Activity: Provide a detailed description of the activity.
- Objectives and Goals: List the objectives and goals of the activity.

3. Methodology:

- Steps Taken: Describe the steps taken to complete the activity.
- Tools and Techniques Used: Mention any tools or techniques used, such as mobile apps, webbased platforms, etc.
- Duration of Engagement: Specify the duration of the engagement (at least 30 hours).

4. Implementation:

- Detailed Description of Engagement Activities: Provide a detailed log of the engagement activities, including day-wise descriptions.
- Proof of Engagement: Include video clips, photographs, and other relevant proofs of engagement.

5. Impact Analysis:

- Impact on Society: Analyze the impact of the activity on society.
- Benefits to the Community: Discuss the benefits provided to the community.

• Testimonials from Beneficiaries: Include testimonials from beneficiaries showcasing the outcomes and benefits.

6. Learning Experiences:

- Skills and Knowledge Gained: Detail the skills and knowledge gained through the activity.
- Reflections on the Experience: Reflect on the overall experience.
- Challenges Faced and Overcome: Describe any challenges faced and how they were overcome.

7. Ethical Considerations:

- Ethical Issues Encountered: Discuss any ethical issues encountered during the activity.
- Solutions and Best Practices: Provide solutions and best practices for addressing these ethical issues.
- Reflections on Social Responsibility: Reflect on the importance of social responsibility.

8. Conclusions:

- Summary of the Experience: Summarize the overall experience.
- Personal Growth and Development: Discuss personal growth and development resulting from the activity.
- Future Recommendations: Provide recommendations for future engagements.
- 9. Appendices:
 - Additional Documents and Proofs: Include any additional supporting documents, such as logbook entries and extra photographs.
 - Video Presentation Link: Provide a link to the video presentation.

Verbal Ability

Program Name	B. Tech CSE with specialization in Cybersecurity			
Course Name: Life Skills for Professionals	Course Code	L-T-P	Credits	
- I	AEC006	3-0-0	3	
Type of Course:	AEC-1		i	
Duration:	36 hours			
Pre-requisite(s), if any: Nil				

Course Perspective: The course aims to improve language proficiency in three key areas: grammar, vocabulary and identification of grammatical errors in writing. Language proficiency enables students to comprehend lectures, understand course materials and enhances students' ability to express themselves clearly and effectively. In many professions, strong language skills are a prerequisite. Whether in business, medicine, law, or science, being able to communicate fluently and accurately is essential for collaboration, negotiation, and advancement. A strong command of verbal abilities can significantly impact job interviews. It allows candidates to answer questions confidently, demonstrate their qualifications effectively and leave a positive impression on potential employers.

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding the grammar rules and word meaning (Vocabulary).
CO 2	Applying grammar rules and vocabulary in different context & purpose
CO 3	Analyzing situations/ context of communication and selecting appropriate grammar and words.
CO 4	Developing sentences and paragraphs to describe and narrate a situation.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Vocabulary Development and Application	No. of hours: 10	
Content:			
Understanding the word quizzes, Conf misspelt words, Idio	concept of root words, Prefix and suffix, Ways to enha using words, One word substitution, Odd one out, Sync oms and Phrases.	nce Vocabulary, Crosswords and onyms and Antonyms, Commonly	
Unit Number: 2	Unit Number: 2 Title: Fundamentals of Grammar and Sentence No. of hours: 8 Structure		
Content: Introduct Complex), Subject	tion to Parts of Speech, Tenses and its 'rules, Sen Verb Agreement, Pronoun Antecedent agreement, Phras	tences (Simple, Compound and es and Clauses.	
Unit Number: 3	Title:MasteringSentenceAccuracyandCompletion Skills	No. of hours: 12	
Content:			
Spot the error (gran	nmatical errors in a sentence), Sentence Correction (Im	provement of sentences based on	
Grammar rules), Sentence Completion, Cloze Tests			
Unit Number: 4	Title:EnhancingSentenceStructureandReading Comprehension	No. of hours: 6	
Content: Logical Arrangement of Sentences, Comprehending passages, Contextual questions, Anagrams, Analogies			

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key life skills concepts using PPTs and real-life examples.
- 2. **Conceptual Understanding**: Cover topics like communication, teamwork, and problem-solving strategies.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on practical scenarios and decision-making.

- 4. Theory Assignments: Assign reflective essays on personal development and professional growth.
- 5. **Group Work**: Collaborate on projects that enhance interpersonal skills and teamwork.
- 6. Case Studies: Analyze successful professionals and their life skills in various industries.
- 7. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding and application of skills.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects focused on applying life skills in real-world contexts.
- 2. Workshops: Facilitate hands-on sessions for practicing communication and leadership skills.
- 3. Question Bank: Provide resources for self-assessment on life skills development.
- 4. **Online Forums**: Create platforms for discussing life skills challenges and sharing experiences.
- 5. Self-Study for Case Studies: Encourage independent research on effective life skills practices.
- 6. **Collaborative Projects**: Organize group projects aimed at community engagement and skill application.

Mapping /Alignment of COs with POs & PSOs

References

- 1. R1. Norman Lewis Word Power Made Easy
- 2. R2. Wren & Martin High School English Grammar & Composition
- 3. R3. R.S. Agarwal & Vikas Agarwal Quick Learning Objective General English
- 4. R4. S.P. Bakshi Objective General English
- 5. R 5. Praxis Groups -Campus Recruitment Complete Reference

Additional Readings:

Communication Resources

I) LinkedIn Learning - Communication Foundations

- a. This course offers foundational knowledge on effective communication strategies, including verbal and non-verbal communication.
- b. Link: LinkedIn Learning Communication Foundations

II) Khan Academy - Grammar

- a. Khan Academy provides a detailed course on grammar which is fundamental to clear and effective communication.
- b. Link: <u>Khan Academy Grammar</u>

Non-Verbal Communication Resources

R1. LinkedIn Learning - Developing Your Emotional Intelligence

- Enhancing emotional intelligence is key to improving non-verbal communication skills. This course covers practical strategies.
- Link: LinkedIn Learning Developing Your Emotional Intelligence

R 2. YouTube - TED Talks on Body Language

- TED Talks provide insightful videos on the importance of body language and how to master it.
- Link: YouTube TED Talks on Body Language

Number Systems and Basic Mathematics Resources

- 1. Khan Academy Arithmetic and Pre-Algebra
 - Comprehensive lessons on basic arithmetic and pre-algebra, including number systems, divisibility, and more.
 - Link: Khan Academy Arithmetic and Pre-Algebra

2. Coursera - Introduction to Mathematical Thinking

- This course introduces mathematical thinking, including logic, which is fundamental to understanding number systems.
- Link: Coursera Introduction to Mathematical Thinking

3. edX - Introduction to Algebra

- Offers a strong foundation in algebra, covering topics such as factors, LCM, HCF, and simplification.
- Link: <u>edX Introduction to Algebra</u>

Time Management Resources

- 1. Coursera Work Smarter, Not Harder: Time Management for Personal & Professional Productivity
 - This course provides practical strategies for effective time management and productivity.
 - Link: <u>Coursera Time Management</u>

2. edX - Time Management Strategies for Project Management

- Focuses on time management within the context of project management, offering valuable insights and techniques.
- Link: edX Time Management Strategies

SUMMER INTERNSHIP-I

Program Name	B. Tech CSE with specialization in Cybersecurity		
Course Name: Summer	Course Code	L-T-P	Credits
Internship-I	ENSI251	0-0-0	2
Type of Course:	INT-I	·	
Pre-requisite(s), if any: NA	·		

Duration:

The internship will last for **six weeks**. It will take place after the completion of the 2^{nd} semester and before the commencement of the 3^{rd} semester.

Internship Options:

Students can choose from the following options:

1. Industry Internship (Offline):

1. Students must produce a joining letter at the start and a relieving letter upon completion.

2. Global Certifications:

1. Students can opt for globally recognized certification programs relevant to their field of study.

3. Research Internship:

1. Students can engage in a research internship under the mentorship of a faculty member for six weeks.

4. **On-Campus Industry Internship Programs:**

1. The university will offer on-campus internships in collaboration with industry partners.

5. Internships at Renowned Institutions:

1. Students can pursue summer internships at esteemed institutions such as IITs, NITs, Central Universities, etc.

Report Submission and Evaluation:

1. **Report Preparation:**

1. Students must prepare a detailed report documenting their internship experience and submit it to the department. A copy of the report will be kept for departmental records.

2. Case Study/Project/Research Paper:

- 1. Each student must complete one of the following as part of their internship outcome:
 - 1. A case study
 - 2. A project
 - 3. A research paper suitable for publication

3. Presentation:

1. Students are required to present their learning outcomes and results from their summer internship as part of the evaluation process.

Evaluation Criteria for Summer Internship (Out of 100 Marks)

1. Relevance to Learning Outcomes (30 Marks)

- 1. Case Study/Project/Research Paper Relevance (15 Marks):
 - Directly relates to core subjects: 15 marks
 - Partially relates to core subjects: 10 marks
 - Minimally relates to core subjects: 5 marks
 - Not relevant: 0 marks

2. Application of Theoretical Knowledge (15 Marks):

- Extensive application of theoretical knowledge: 15 marks
- Moderate application of theoretical knowledge: 10 marks
- Minimal application of theoretical knowledge: 5 marks
- No application of theoretical knowledge: 0 marks

2. Skill Acquisition (30 Marks)

- 1. New Technical Skills Acquired (15 Marks):
 - Highly relevant and advanced technical skills: 15 marks
 - Moderately relevant technical skills: 10 marks

- Basic technical skills: 5 marks
- No new skills acquired: 0 marks

2. Professional and Soft Skills Development (15 Marks):

- o Significant improvement in professional and soft skills: 15 marks
- Moderate improvement in professional and soft skills: 10 marks
- Basic improvement in professional and soft skills: 5 marks
- No improvement: 0 marks

3. Report Quality (20 Marks)

- Structure and Organization (10 Marks):
 - Well-structured and organized report: 10 marks
 - Moderately structured report: 7 marks
 - Poorly structured report: 3 marks
 - No structure: 0 marks

• Clarity and Comprehensiveness (10 Marks):

- Clear and comprehensive report: 10 marks
- Moderately clear and comprehensive report: 7 marks
- Vague and incomplete report: 3 marks
- Incomprehensible report: 0 marks

4. Presentation (20 Marks)

- Content Delivery (10 Marks):
 - Clear, engaging, and thorough delivery: 10 marks
 - Clear but less engaging delivery: 7 marks
 - Somewhat clear and engaging delivery: 3 marks
 - Unclear and disengaging delivery: 0 marks

• Visual Aids and Communication Skills (10 Marks):

- o Effective use of visual aids and excellent communication skills: 10 marks
- o Moderate use of visual aids and good communication skills: 7 marks
- Basic use of visual aids and fair communication skills: 3 marks
- No use of visual aids and poor communication skills: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

• Apply Theoretical Knowledge:

- Integrate and apply theoretical knowledge gained during coursework to real-world industry or research problems.
- Develop Technical Skills:
 - Acquire and demonstrate advanced technical skills relevant to the field of computer science and engineering through practical experience.

• Conduct Independent Research:

 Execute independent research projects, including problem identification, literature review, methodology design, data collection, and analysis.

• Prepare Professional Reports:

• Compile comprehensive and well-structured reports that document the internship experience, project details, research findings, and conclusions.

• Enhance Problem-Solving Abilities:

• Develop enhanced problem-solving and critical thinking skills by tackling practical challenges encountered during the internship.

• Improve Professional and Soft Skills:

• Exhibit improved professional and soft skills, including communication, teamwork, time management, and adaptability in a professional setting.

• Present Findings Effectively:

 Deliver clear and engaging presentations to effectively communicate project outcomes, research findings, and acquired knowledge to peers and faculty members.

• Pursue Lifelong Learning:

• Demonstrate a commitment to lifelong learning by engaging in continuous skill development and staying updated with emerging trends and technologies in the field.

Learning Experiences

Classroom Learning Experience

- 1. **Orientation Sessions**: Introduce internship objectives and expectations through interactive presentations.
- 2. **Skill Development Workshops**: Cover essential skills like communication, teamwork, and time management.
- 3. **Project Planning**: Guide students in developing project proposals aligned with internship goals.
- 4. Group Discussions: Facilitate discussions on challenges and experiences in workplace settings.
- 5. Guest Speakers: Invite industry professionals to share insights and best practices.

6. **Continuous Feedback**: Implement regular check-ins and peer reviews to assess progress and learning.

Outside Classroom Learning Experience

- 1. Internship Placement: Engage students in real-world work environments to apply learned skills.
- 2. **Reflective Journals**: Encourage students to document their experiences and lessons learned during the internship.
- 3. **Project Implementation**: Work on assigned projects and tasks within the organization.
- 4. Networking Opportunities: Create platforms for students to connect with industry professionals.
- 5. Self-Assessment: Provide tools for students to evaluate their performance and growth.
- 6. **Final Presentations**: Organize sessions for students to present their internship experiences and outcomes.

COMPETITIVE CODING -I

Program Name: B. Tech (Com		omputer Science and Engineering)		
Course Name:	Course Code	L-T-P	Credits	
COMPETITIVE CODING -I		3-0-0	0	
Type of Course:	AUDIT -II	AUDIT -II		
Contact Hours	30	30		
Version				

Course Outcomes

CO1	Understanding problem-solving strategies and techniques relevant to competitive programming
CO2	Analyzing the efficiency of algorithms in terms of time and space complexity using asymptotic
	notations
CO3	Applying core programming concepts such as functions, recursion, and dynamic memory
	allocation to solve computational problems
CO4	Implementing solutions for problems involving arrays and strings, utilizing efficient operations
	and algorithms

Course Outline:

Unit Number: 1 Title: Foundations of Competitive Programming		No. of hours: 8	
Content:			
Introduction to Compet	itive Programming Platforms		
 Overview of m 	ajor platforms: Codeforces, LeetCode, HackerRank etc.		
 Setting up acco 	ounts and environment for competitive programming.		
 Solving introdu 	 Solving introductory problems to get familiar with the platforms. 		
Problem-Solving Strate	gies		
 Techniques for 	solving problems		
 Greedy Algorit 	hms: Understanding local optimality leading to global solutions	5.	
• Divide and Co	nquer: Solving problems by breaking them into subproblems	(with examples like Merge	

Sort).

• Brute Force: Iterative approach to solve problems when constraints are small.

Unit Number: 2 Title: Time and Space Complexity of Algorithms		No. of hours: 8		
Content:				
Time and Space Comp	lexity:			
 Big O Notation 	n: Definition, examples, and practical importance.			
 Common Com 	plexities: $O(1)$, $O(\log n)$, $O(n)$, $O(n \log n)$, $O(n^2)$, etc.			
 Impact of time 	and space complexity on algorithm performance.			
 Asymptotic no 	tations			
 Best, Average 	and worst case analysis of Algorithms			
Unit Number: 3	Title: Core Programming Concepts	No. of hours: 8		
Content:				
Functions: Definition	and Declaration, Function Overloading, Recursion and Backtrack	ng		
Pointers: Basics of Po	inters and References, Pointer Arithmetic, Dynamic Memory Alle	ocation (malloc, free, new,		
delete)				
Files: File I/O Operation	ons (Reading/Writing), File Handling in C++/Java/Python, Vector	ors (in C++/ArrayLists in		
Java): Declaration, Ini	tialization, and Operations, Dynamic Resizing			
Unit Number: 4	Title: Arrays and Strings	No. of hours: 6		
Content:				
Arrays: Operations, Manipulations				
Strings: Operations, Substrings, Pattern Matching				
Operations on arrays: Insertion, deletion, and traversal.				
String operations: Concatenation, substring search.				
Key Problems: Rotating arrays, reversing strings, finding longest substrings without repeating characters				

Experiment List

Problem Statement	Mapped COs
1. Two Sum: Find two numbers that add up to a specific target.	CO1
2. Best Time to Buy and Sell Stock: Maximize profit from stock prices.	CO1
3. Valid Parentheses: Check if a string contains valid parentheses.	CO1
4. Greedy Algorithm: Jump Game - Can you reach the end of the array?	CO1
5. Divide and Conquer: Merge Sort implementation to sort an array.	CO1
6. Brute Force: Find all subsets of a given set.	CO1
7. Greedy Algorithm: Minimum Number of Platforms Required for Trains	CO1
8. Divide and Conquer: Maximum Subarray (Kadane's Algorithm)	CO1
9. Brute Force: Count number of occurrences of a substring in a string.	CO1
10. Greedy Algorithm: Coin Change Problem (Minimum Coins)	CO1
11. Time Complexity: Check if a number is prime using $O(\sqrt{n})$ complexity.	CO2
12. Sorting: QuickSort algorithm with O(n log n) complexity.	CO2
13. Big O Notation: Analyze time complexity of an algorithm.	CO2
14. Space Complexity: Fibonacci with O(n) space complexity.	CO2
15. Time Complexity: Find first duplicate element in an array with O(n) time.	CO2
16. Time Complexity: Search an element in a rotated sorted array in O(log n) time.	CO2
17. Complexity Analysis: Binary Search Tree operations with complexity O(log n).	CO2
18. Analyze best, average, and worst case for Insertion Sort.	CO2
19. Time and Space Complexity: Check the complexity of an algorithm (recurrences).	CO2
20. Time Complexity: Compute factorial recursively with complexity analysis.	CO2
21. Recursion: Generate all permutations of a string.	CO3
22. Dynamic Memory Allocation: Implement a dynamic array (vector) from scratch.	CO3
23. Backtracking: Solve the N-Queens problem using recursion.	CO3
24. Pointers: Swap two numbers using pointers in C++.	CO3
25. File Handling: Read and write data to a file in Python/C++/Java.	CO3
26. Function Overloading: Implement overloaded functions for adding integers and floats.	CO3

Problem Statement	Mapped COs
27. Dynamic Memory Allocation: Use malloc and free to manage memory in C.	CO3
28. Recursion: Solve Tower of Hanoi using recursion.	CO3
29. Arrays: Rotate an array to the right by k steps.	CO4
30. Strings: Find the longest substring without repeating characters.	CO4

Learning Experiences:

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce competitive coding concepts and strategies using PPTs and coding demos.
- 2. Algorithm Workshops: Cover key algorithms and data structures essential for coding competitions.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on solving competitive coding problems.
- 4. Mock Contests: Organize timed coding contests to simulate competition environments.
- 5. Group Discussions: Facilitate discussions on problem-solving techniques and optimization strategies.
- 6. **Continuous Feedback**: Implement peer reviews and performance assessments after practice sessions.

Outside Classroom Learning Experience

- 1. **Practice Assignments**: Assign coding problems from various online platforms for independent practice.
- 2. Online Competitions: Encourage participation in external coding competitions and hackathons.
- 3. **Question Bank**: Provide a repository of practice problems and resources for self-assessment.
- 4. **Online Forums**: Create platforms for students to discuss coding challenges and share solutions.
- 5. **Self-Study Resources**: Recommend books and online courses for further learning on algorithms and data structures.
- 6. **Collaborative Projects**: Organize group projects to develop coding applications or solve larger problems together.

Textbooks:

- "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
- "Algorithm Design" by Jon Kleinberg and Éva Tardos.

Online Resources:

- LeetCode (<u>https://leetcode.com/</u>)
- HackerRank (<u>https://www.hackerrank.com/</u>)
- GeeksforGeeks (<u>https://www.geeksforgeeks.org/</u>)

List of Suggested Competitive Programming Courses:

- 1. <u>Algorithms and Data Structures</u> by MIT OpenCourseWare
- 2. Introduction to Competitive Programming by NPTEL
- 3. <u>Competitive Programming</u> by HackerRank
- 4. <u>The Bible of Competitive Programming & Coding Interviews</u>

All students must complete one online course from the suggested programs.

Web References

- https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/
- https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoftadobe/
- https://github.com/parikshit223933/Coding-Ninjas-Competitive-Programming
- https://www.hackerearth.com/getstarted-competitive-programming/
- https://www.csestack.org/competitive-coding-questions/

References to Interview Questions

- https://www.simplilearn.com/coding-interview-questions-article
- https://www.csestack.org/competitive-coding-questions/
- https://www.geeksforgeeks.org/a-competitive-programmers-interview/
- <u>https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/</u>

SEMESTER: IV

ANALYSIS AND DESIGN OF

ALGORITHMS

Program Name	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Analysis and Design of Algorithms	ENCS202	3-1-0	4	40
Type of Course:	Major-14			
Pre-requisite(s), if any: - Introduction to Data Structures				

Course Perspective The course provides a comprehensive introduction to the fundamental concepts of algorithm analysis and design, essential for various fields such as computer science, engineering, data science, and artificial intelligence. This course equips students with the tools to understand, analyze, and develop efficient algorithms for solving complex computational problems. By covering both theoretical foundations and practical applications, the course ensures a balanced approach to learning. The course is divided into 5 modules:

- a) Introduction and Complexity Analysis
- b) Divide and Conquer, Greedy Algorithms, and Dynamic Programming
- c) Graph Algorithms
- d) Advanced Algorithms and Techniques
- e) Advanced Topics and Implementation Techniques

The Course Outcomes (COs).

COs	Statements
CO 1	Understanding fundamental algorithmic concepts and analyze their complexities.
CO 2	Analyzing and evaluating the performance of various algorithms.
CO 3	Designing efficient algorithms considering both time and space complexities.
CO 4	Applying algorithmic problem-solving strategies to a variety of computational problems.

CO 5	Developing skills to implement and optimize algorithms for real-world applications.
------	--

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction and Complexity Analysis	No. of hours: 10		
Content:				
Introduction to Algor	ithms: Definition, importance, specification and role in prob	lem-solving.		
Algorithm Analysis:	RAM computational models, Time and space complex	ity, Asymptotic Notations, best,		
average, and worst-case	e analysis, Performance measurement of algorithms, rate of g	growth of algorithms		
Recurrence Relations	Solving recurrences using substitution, recursion tree, and a	master theorem.		
U-++ Numbou 2	Title: Divide and Conquer, Greedy Algorithms, and	No schourse 10		
Unit Number: 2	Dynamic Programming	No. of hours: 10		
Content:				
Divide and Conquer:	General method, Merge Sort, Quick Sort, Binary Search,	Strassen's Matrix Multiplication,		
finding maximum and	minimum.			
Greedy Algorithms: C	concept and characteristics, Fractional Knapsack, Activity Se	election, Huffman Coding.		
Dynamic Programmi	ng: General Method, Longest Common Subsequence, 0/1	Knapsack problem, Matrix Chain		
Multiplication, Travelli	ng salesman problem.			
Unit Number: 3Title: Graph AlgorithmsNo. of hours: 10				
Content:				
Graph Representation: Adjacency matrix, adjacency list.				
Graph Traversal Alg	orithms: Depth First Search (DFS), Breadth First Search	ch (BFS), Applications of graph		
(Topological sorting).				
Shortest Path Algorithms: Dijkstra's algorithm, Bellman-Ford algorithm, Floyd-Warshall algorithm.				
Minimum Spanning Tree Algorithms: Kruskal's algorithm, Prim's algorithm.				
Unit Number: 4	Title: Advanced Algorithms and Techniques	No. of hours: 10		
Content :				
Backtracking: Concept, examples (N-Queens problem, Sum of subsets).				
Branch and Bound: Concept, examples (Traveling Salesman Problem, 0/1 Knapsack Problem).				
String Matching Algorithms: Naive algorithm, Rabin-Karp algorithm, String matching with finite automata,				

Knuth-Morris-Pratt (KMP) algorithm.

Introduction to NP-Completeness: The class P and NP, Polynomial time, NP-complete and NP-hard.

Introduction to Approximation Algorithms and Randomized Algorithms

Learning Experiences

Inside Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts in algorithm design and analysis using PPTs and examples.
- 2. **Conceptual Understanding**: Cover fundamental topics like complexity analysis, recursion, and algorithmic paradigms.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on designing and analyzing various algorithms.
- 4. **Case Studies**: Analyze real-world algorithms and their applications in different fields.
- 5. Group Work: Collaborate on projects that involve implementing and optimizing algorithms.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding and application of concepts.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects requiring analysis and design of algorithms for practical problems.
- 2. Lab Projects: Facilitate hands-on programming tasks to implement and test algorithms.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on algorithm concepts.
- 4. **Online Forums**: Create platforms for discussing algorithm challenges and sharing solutions.
- 5. Self-Study for Case Studies: Encourage independent research on advancements in algorithm design and analysis.
- 6. **Collaborative Projects**: Organize group projects focused on solving complex problems using algorithms.

Additional Readings:

Online Learning Resources :

- I) MIT OpenCourseWare Introduction to Algorithms (6.006)
 - a. A comprehensive resource from MIT covering fundamental and advanced algorithms.
 - b. Link: MIT OpenCourseWare Introduction to Algorithms

II) HackerRank - Algorithms Practice

a. Provides a platform to practice and compete in coding challenges related to algorithms.

b. Link: <u>HackerRank - Algorithms Practice</u>

III) LeetCode - Algorithm Problems

- a. A platform offering a vast array of problems to practice algorithms and data structures.
- b. Link: LeetCode Algorithm Problems

ANALYSIS AND DESIGN OF

ALGORITHMS LAB

Program Name	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Analysis and Design of Algorithms Lab	ENCS256	0-0-2	1
Type of Course:	Major-16	·	
Pre-requisite(s), if any: - Data Structure			

Defined Course Outcomes

COs	Statements
CO 1	Analyzing the time and space complexity of algorithms, demonstrating an understanding of asymptotic notations and performance metrics.
CO 2	Implementing and compare sorting algorithms, such as bubble sort and insertion sort, and apply the divide and conquer technique to algorithms like merge sort and quick sort
CO 3	Solving optimization problems using greedy and dynamic programming algorithms, such as the fractional knapsack problem and longest common subsequence
CO 4	Developing graph algorithms for traversal, shortest path, and minimum spanning tree, applying techniques like DFS, BFS, Dijkstra's, and Kruskal's algorithms
CO 5	Implementing advanced algorithms for problems like N-Queens, traveling salesman, and string matching using backtracking, branch and bound, and pattern matching techniques

Lab Experiments

S.N	Lab Task	Mapped

		CO/COs
	Conduct a case study on the efficiency of different sorting algorithms (e.g., Insertion Sort,	CO1
1	Bubble Sort, Merge Sort, Quick Sort, Counting Sort, Radix sort, Bucket sort).	
	Develop a tool in your preferred programming language to measure the performance of	CO1
2	various algorithms.	
3	Develop a resource allocation system for a fictional company using greedy algorithms.	CO2
	Build a web application that solves dynamic programming problems. Implement solutions for	CO2
4	the Longest Common Subsequence, 0/1 Knapsack Problem, and Matrix Chain Multiplication.	
	Create a file compression tool using the Huffman Coding algorithm. Allow users to input a	CO2
5	text file and generate the corresponding Huffman tree and encoded output	
	Create a program to represent a social network using both adjacency matrix and adjacency list	CO3
6	representations.	
	Develop a web crawler simulation that uses Depth First Search (DFS) and Breadth First	CO3
7	Search (BFS) algorithms to traverse a given website's pages.	
	Design a city navigation system that calculates the shortest path between locations using	CO3
8	Dijkstra's algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm.	
	Implement a solution to the N-Queens problem using backtracking. Allow the user to input the	CO4
9	size of the chessboard (N) and display all possible solutions	
	Write a program to find all subsets of a given set of positive integers that sum up to a given	CO4
10	value using the backtracking technique.	
	Develop the simulation of various string matching algorithms and compare their runtime	CO4
11	complexities. Display their time complexity graphs	

DATABASE MANAGEMENT SYSTEMS

Program Name	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Database Management System	ENCS204	3-1-0	4	40
Type of Course:	Major -15			
Pre-requisite(s), if any: Basics of Computer Fundamentals				

Course Perspective: This course provides a comprehensive introduction to the fundamental concepts and advanced techniques of database management systems (DBMS). It is designed to equip students with the

knowledge and skills required to design, implement, and manage databases effectively. The course covers a broad range of topics, including database architecture, data models, SQL, transaction management, concurrency control, database recovery, and security. The course is divided into 4 modules:

a) Introduction

- b) Relational Query Languages
- c) Transaction Processing and Storage Strategies
- d) Advanced Topics and Database Security

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the fundamental concepts and architecture of database management systems, including data models and ER modeling.
CO 2	Utilizing Structured Query Language (SQL) and relational algebra for effective database querying and manipulation.
CO 3	Applying database design principles, including normalization and integrity constraints, to develop well-structured databases.
CO 4	Analyzing storage structures, transaction processing, concurrency control, and recovery protocols in databases.
CO 5	Implementing security measures and explores advanced database concepts such as distributed databases, data warehousing, and data mining.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction	No. of hours: 12		
Content:				
Introduction to DBMS: Overview, benefits, and applications.				
Database System Architecture: Schemas, Instances, Data abstraction, data models (network model,				
relational model, object-oriented data model), Three schema architecture and data independence				
Entity-Relationsh	ip Model: Entity Types, Entity Sets, Attribute	s, and Keys, Relationship Types,		

Relationship Sets, ER diagrams, Naming Conventions, Design issues. **Integrity Constraints**: Primary key, foreign key, unique, not null, check constraints. Unit Number: 2 **Title: Relational Query Languages** No. of hours: 8 **Content:** Relational Database Design, Relational query languages, Relational algebra, Tuple and domain relational calculus. SQL: DDL (Data Definition Language), DML (Data Manipulation Language), DCL (Data Control Language). **Query Processing and Optimization:** Evaluation of relational algebra expressions, query equivalence, join strategies, query optimization algorithms. Database Design: Functional dependencies, normalization (1NF, 2NF, 3NF, BCNF, 4NF), dependency preservation, lossless decomposition. Open Source and Commercial DBMS: Overview of MySQL, Oracle, DB2, SQL Server. Title: **Transaction Processing and Storage** Unit Number: 3 No. of hours: 12 **Strategies Content:** Transaction Management: ACID properties, transaction states, serializability, conflict and view serializability. Concurrency Control: Lock-based protocols, timestamp-based protocols, multi-version concurrency control, deadlock handling. Database Recovery: Recovery concepts, recovery techniques (log-based recovery, shadow paging), checkpoints. Storage Strategies: File organization, indexing (single-level, multi-level), B-tree, B+ tree, hashing (static and dynamic). Unit Number: 4 Title: Advanced Topics and Database Security No. of hours: 8 **Content:** Database Security: Authentication, authorization, access control, DAC (Discretionary Access Control), MAC (Mandatory Access Control), RBAC (Role-Based Access Control). Intrusion Detection: Techniques and tools, SQL injection prevention.

Advanced Database Topics: Object-oriented databases, object-relational databases, logical databases, web databases.

Distributed Databases: Concepts, architecture, data fragmentation, replication, distributed query processing.

Data Warehousing and Data Mining: Concepts, architecture, OLAP, data preprocessing, data mining techniques.

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts in database management using PPTs and case studies.
- 2. **Conceptual Understanding**: Cover fundamental topics like data modeling, normalization, and SQL.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on database design and query optimization.
- 4. **Case Studies**: Analyze real-world database systems and their architectures.
- 5. Group Work: Collaborate on projects that involve designing and implementing databases.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of database concepts.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects requiring the application of database management principles.
- 2. Lab Projects: Facilitate hands-on tasks to create, manipulate, and query databases using DBMS software.
- 3. Question Bank: Provide practice problems and resources for self-assessment on database topics.
- 4. **Online Forums**: Create platforms for discussing database challenges and sharing solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on current trends and technologies in database management.
- 6. **Collaborative Projects**: Organize group projects focused on developing database solutions for real-world problems.

Text Books

- 1. R. Elmasri and S.B. Navathe, 2000, Fundamentals of Database Systems, 3rd Ed, AW.
- 2. C.J. Date, 2000, An Introduction to Database Systems, 7th ED., Addison-Wesley.
- Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

Additional Readings:

Online Learning Resources for "Database Management Systems"

- 1. NPTEL-Database Management System
- 2. MIT OpenCourseWare Database Systems (6.830)
 - Advanced course materials from MIT covering database system internals and advanced topics.
 - Link: <u>MIT OpenCourseWare Database Systems</u>
- 3. Oracle Database 2-Day Developer's Guide
 - Official documentation and guide for Oracle database developers.
 - Link: Oracle Database 2-Day Developer's Guide

4. SQLBolt - Learn SQL with interactive exercises

- Interactive SQL tutorials and exercises to practice database querying.
- Link: <u>SQLBolt Learn SQL</u>

DATABASE MANAGEMENT SYSTEMS

LAB

Program Name	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits

Database Management System Lab	ENCS254	0-0-2	1
Type of Course:	Major-17		

Defined Course Outcomes

COs	Statements
CO 1	Designing and implementing database schemas using both open-source and commercial
COT	DBMS, defining tables, relationships, and integrity constraints
CO 2	Developing and analyzing Entity-Relationship diagrams, relational schemas, and enforce
02	normalization techniques to ensure database efficiency and integrity
	Understanding the Write and execute SQL queries for data definition, manipulation, and
CO 3	complex data retrieval, demonstrating proficiency in relational algebra and transaction
	processing
CO 4	Implementing advanced database concepts including indexing, concurrency control,
0.04	recovery techniques, security features, and distributed database processing

Lab Experiments

Ex.	Lab Task	Mapped			
No					
1	Analyze and document the benefits of using a DBMS over a traditional file system	CO1			
	for managing data. Use a case study of a small retail business to highlight the				
	advantages of a DBMS in handling inventory, sales, and customer data.				
2	Design a three-schema architecture for a university management system. Create the	CO1			
	internal schema, conceptual schema, and external schema.				
	Illustrate how data independence is achieved and provide examples of each schema				
	with specific details.				
3	Design and implement an ER model for a university course registration system. The	CO1			
	system should include entities such as Students, Courses, Professors, and				
	Enrollments. Define relationships, attributes, and keys				
4	Design a relational database schema for an e-commerce platform that manages	CO2			

	Customers, Products, Orders, Order Details, and Payments. Define the entities, their	
	attributes, and the relationships between them, ensuring the schema is normalized to	
	at least 3NF.	
	Use this schema to create an ER diagram and specify primary and foreign keys.	
5	Write SQL scripts to create the e-commerce platform database schema using Data	CO2
	Definition Language (DDL). Create tables for Customers, Products, Orders, Order	
	Details, and Payments, and enforce primary keys, foreign keys, unique constraints,	
	not null constraints, and check constraints. Ensure the database structure supports	
	data integrity and consistency	
6	Populating, Querying, and Securing the E-commerce Database using SQL DML,	CO2
	DCL, and Relational Algebra/Calculus	
7	Design and implement a banking transaction management system that demonstrates	CO3
	the ACID properties. The system should handle various transaction states, ensuring	
	serializability and data integrity.	
	Implement features for depositing, withdrawing, and transferring funds, and simulate	
	scenarios to showcase conflict and view serializability.	
8	Develop a concurrency control mechanism for an e-commerce platform to manage	CO3
	simultaneous transactions, such as placing orders and updating inventory.	
	Implement lock-based protocols, timestamp-based protocols, and multi-version	
	concurrency control. Simulate scenarios where deadlock handling techniques are	
	required to ensure smooth operation	
9	Design and implement a data warehousing solution for a financial analytics platform.	CO4
	Create a data warehouse to store historical financial data and perform OLAP	
	operations for data analysis.	
	Implement data preprocessing techniques and apply data mining algorithms to	
	discover patterns and insights from the financial data. Simulate various analytical	
	queries and demonstrate how the data warehouse and mining techniques enhance	
	decision-making and business intelligence.	

Programme Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Certified Cybersecurity	ENSP206	4-0-0	4	40
Technician (CCT)				
Type of Course:	IDC-4			
Pre-requisite(s), if any: Knowledge of Networking basics Concepts				

CERTIFIED CYBERSECURITY TECHNICIAN (CCT)

Course Perspective. The CCT is an entry-level cybersecurity program engineered by EC-Council, to address the global need and demand for cybersecurity technicians with strong foundational skills. CCT provides the foundational skills essential for starting a career in cybersecurity, focusing on four disciplines: network defense, ethical hacking, digital forensics, and security operations. The CCT certification prepares IT and cybersecurity professionals to handle a wide range of complex issues related to securing software, networks, and IT systems against common cyber threats and attacks. The course is divided into 4 modules:

- a) Information Security Threats and Vulnerabilities, Attacks, Network Security Fundamentals, Identification, Authentication, and Authorization
- b) Network Security Controls, Network Security Controls Administrative Controls, Physical Controls and Technical Controls, Network Security Assessment Techniques and Tools and Application Security
- c) Virtualization and Cloud Computing, Wireless Network Security, Mobile Device Security and IoT and OT Security
- d) Cryptography, Data Security, Network Troubleshooting, Network Traffic Monitoring, Network Logs Monitoring and Analysis

Course Outcomes (COs). On completion of the course the participants will be:

CO1	Understanding the fundamentals of cybersecurity, such as data privacy, encryption
	methods, risk mitigation, and security protocols.
CO2	Demonstrating the ability to install, configure, maintain, and troubleshoot cybersecurity
	hardware and software.

CO3	Developing strong password security practices and encryption techniques.
CO4	Identifying the different types of threats, attacks, and vulnerabilities in computersystems.
	Applying system hardening methods to reduce potential attack surface area.
CO5	

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Title: Information Security Threats and Vulnerabilities,		
Attacks, Network Security Fundamentals, Identification,		
Authentication, and Authorization	No. of hours:	8
	Title: Information Security Threats and Vulnerabilities, Attacks, Network Security Fundamentals, Identification, Authentication, and Authorization	Title: Information Security Threats and Vulnerabilities,Attacks, Network Security Fundamentals, Identification,Authentication, and AuthorizationNo. of hours:

Threats Sources, Define Threat Actors/Agents, Malware and its Types, Define Vulnerabilities, Different Types of Vulnerabilities, Information Security Attacks, Hacking Methodologies and Frameworks, Network-level Attacks, Application-level and OS-level Attacks, Social Engineering Attacks, Wireless Network-specific Attacks, Understand IoT, OT, and Cloud Attacks, Cryptographic Attacks, Information Security Fundamentals, Network Security Fundamentals, Access Control Principles, Terminologies, and Models, Identity and Access Management (IAM).

Unit Number: 2	Title: Network Security Controls –	No. of hours: 8
	Administrative Controls, Physical Controls and Technical	
	Controls, Network Security Assessment Techniques and	
	Tools and Application Security	

Content:

Various Regulatory Frameworks, Laws, and Acts, Information Security Governance and Compliance Program, Security Policies, Different Types of Security and Awareness Training, the Importance of Physical Security, Various Physical Security Controls, Workplace Security, Various Environmental Controls, Essential Network Security Protocols, Security Benefits of Network Segmentation, Different Types of Firewalls and their Role, Different Types of IDS/IPS and their Role, Different Types of Honeypots, Different Types of Proxy Servers and their Benefits, Fundamentals of VPN and its importance in Network Security, Other Network Security Controls, Importance of Load Balancing in Network Security, Various Antivirus/Anti-malware Software, Threat Hunting, Various Threat Intelligence Feeds and Sources, Vulnerability Assessment, Ethical Hacking Concepts, Fundamentals of Penetration Testing and its Benefits, Fundamentals of Configuration Management and Asset Management, Secure Application Design and Architecture, Software Security Standards, Models, and Frameworks, Understand Secure Application, Development, Deployment, and Automation, Application Security Testing Techniques and Tools.

Unit Number: 3	Title:	Virtualization	and	Cloud	Computing,	Wireless	No. of hours:	8 hrs
	Netwo	rk Security, Mo	bile D	evice Se	curity and Io	Γ and OT		
	Securi	ty						

Content:

Virtualization Essential Concepts and OS Virtualization Security, OS Virtualization Security and Concerns, OS Virtualization Security Best Practices, Cloud Computing Fundamentals, Insights of Cloud Security and Best Practices, Wireless Network Fundamentals, Wireless Network Encryption Mechanisms, Different Types of Wireless Network Authentication Methods, Wireless Network Security Measures, Various Mobile Device Connection Methods, Mobile Device Management Concepts, Common Mobile Usage Policies in Enterprises, Security Risks and Guidelines Associated with Enterprises Mobile Usage Policies, Enterprise-level Mobile Security Management Solutions, General Security Guidelines and Best Practices on Mobile Platforms, IoT Devices, Application Areas, and Communication Models, Security in IoT-enabled Environments.

Unit Number: 4	Title:	Cryptog	raphy,	Data	Security,	Network	
	Trouble	shooting,	Network	Traffic	Monitoring,	Network	No. of hours: 8 hrs
	Logs Mo	onitoring	and Analy	sis			

Content:

Cryptographic Security Techniques, Various Cryptographic Algorithms, Various Hash Functions and Cryptography Tools, PKI and Certificate Management Concepts, Other Applications of Cryptography, Data Security and its Importance, Various Data Security Controls, Data Backup, Retention, and Destruction, Data Loss Prevention Concepts, Network Troubleshooting, Learn Troubleshooting Basic Network Issues using Utilities and Tools, Need and Advantages of Network Traffic Monitoring, Baseline Traffic Signatures for Normal and Suspicious Network Traffic, Perform Network Monitoring for Suspicious Traffic, Logging Concepts, Log Monitoring and Analysis on Windows Systems, Log Monitoring and Analysis on Linux, Various Log Management Tools.

Unit Number: 5	Title: Incident Response, Computer Forensics, Business	
	Continuity and Disaster Recovery and Risk Management	No. of hours: 8 hrs

Content:

Incident Response Concepts, the Role of First Responder in Incident Response, Incident Handling and Response Process, Fundamentals of Computer Forensics, Digital Evidence, Identify the Roles and Responsibilities of a Forensic Investigator, Forensic Investigation Process and its Importance, Various Forensic Investigation Phases, Digital Evidence Sources to Support Forensic Investigation, Collecting the Evidence, Securing the Evidence, Overview of Data Acquisition, Performing Evidence Analysis, Business Continuity (BC) and Disaster Recovery (DR) Concepts, BC/DR Activities, Business Continuity Plan (BCP) and Disaster Recovery Plan (DRP), Risk Management Concepts, Various Risk Management Phases, Various Risk Management Frameworks.

Learning Experiences:

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key cybersecurity concepts using PPTs and real-world examples.
- 2. **Conceptual Understanding**: Cover topics like network security, threat analysis, and incident response.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on identifying vulnerabilities and implementing security measures.
- 4. Case Studies: Analyze real-world cybersecurity incidents and their resolutions.
- 5. Group Work: Collaborate on projects that involve developing security policies and strategies.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of cybersecurity practices.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying cybersecurity concepts to practical scenarios.
- 2. Lab Projects: Facilitate hands-on activities involving security tools and techniques.
- 3. Question Bank: Provide practice problems and resources for self-assessment in cybersecurity.
- 4. **Online Forums**: Create platforms for discussing cybersecurity challenges and sharing solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on emerging threats and best practices in cybersecurity.
- 6. **Collaborative Projects**: Organize group projects focused on addressing specific cybersecurity challenges.

Evaluation Scheme (Theory):

Evaluation Components	Weightage
Internal Marks (Theory)	
I) Continuous Assessment (30 Marks)	
(All the components to be evenly spaced)	
Project/ Quizzes/ Assignments and Essays/	
Presentations/ Participation/ Case Studies/	
Reflective Journals (minimum of five components	
to be evaluated)	30 Marks
II) Internal Marks (Theory) – Mid	20 Marks
Term Exam	
External Marks (Theory): -	50 Marks
End term Examination	
Total	100 Marks

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Examination separately to secure minimum passing grade).

Text Books:

- 1. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software Authors: Michael Sikorski, Andrew Honig.
- 2. Hacking: Computer Hacking, Security Testing, Penetration Testing, and Basic Security, Author: John Slavio

References

R1: https://www.eccouncil.org/academia/.Certified-Cybersecurity-Technician- cct/

R2: Certified Cybersecurity Technician v1

Self-Learning Components:

- 1. **Virtual Lab Setup**: Students set up virtual labs to simulate and test network security configurations.
- 2. Online CTF Challenges: Students participate in cybersecurity challenges to solve security puzzles and understand vulnerabilities.
- 3. **Research and Presentation:** Students research and present on current cybersecurity trends and advancements.
- 4. **Webinars and Online Lectures:** Students attend webinars and guest lectures from industry experts to gain professional insights.
- 5. **Interactive Learning Modules:** Students engage with interactive online modules to explore complex cybersecurity topics at their own pace.

Open-Source Society University (OSSU)

- OSSU Computer Science
 - OSSU provides an open-source curriculum for learning computer science. While it covers a broad range of topics in computer science, it includes resources for learning about encryption principles, threats to communication networks, and the implementation of security measures in networks.
 - Link: OSSU Computer Science

CERTIFIED CYBERSECURITY

TECHNICIAN (CCT) LAB

Department:	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Certified Cybersecurity Technician (CCT) Lab	ENSP256	0-0-2	2
Type of Course:	IDC-5		

Pre-requisite(s), if any: Knowledge of Networking basics Concepts

Defined Course Outcomes

COs	Statements
CO1	Applying techniques to detect vulnerabilities and malware using specialized tools.
CO2	Performing and Implementing Attacks - Perform network attacks and implement defensive strategies using security tools.
CO3	Establishing Security Policies - Establish and manage secure access and authentication policies.
CO4	Securing Networks and Communications - Configure and secure network communications to prevent unauthorized access.
CO5	Validating Security Incidents - Analyze and validate security incidents and forensic data.

Ex.	Experiment Title	Mapped
No		CO/COs
1	Create a Trojan to Gain Access to the Target System	CO1
2	Find Vulnerabilities on Exploit Sites	CO1
3	Perform a Man-in-the-Middle (MITM) Attack using Cain & Abel	CO2
4	Perform a DoS Attack on a Target Host using hping	CO2
5	Perform an SQL Injection Attack Against MSSQL to ExtractDatabases using	CO2
	sqlmap	
6	Implement Access Controls in Windows Machine	CO3
7	Implement Centralized Authentication Mechanism	CO3
8	Implement Password Policies using Windows Group Policy	CO3
9	Implement a Secure Network Policy	CO3
10	Implement Host-based Firewall Functionality UsingWindows Firewall	CO3
11	Detect Malicious Network Traffic using HoneyBOT	CO2
12	Scan System for Viruses using Kaspersky Internet Security	CO1
13	Collect Data through Search Engines	CO1

Lab Experiments

14	Perform Vulnerability Research in Common WeaknessEnumeration (CWE)	CO2
15	Detect Injection Vulnerability using Burp Suite	CO2
16	Perform Web Server Footprinting using Various FootprintingTools	CO2
17	Audit Docker Host Security using Docker-Bench-SecurityTool	CO2
18	Implement AWS Identity and Access Management	CO2
19	Configure Security on a Wireless Router	CO4
20	Implement Enterprise Mobile Security using Miradore MDMSolution	CO4
21	Secure IoT Device Communication using TLS/SSL	CO2
22	Calculate One-way Hashes using HashCalc	CO1
23	Create and Manage Certificates using OpenSSL	CO1
24	Perform Disk Encryption using BitLocker Drive Encryption	CO2
25	Implement Built-in File System-level Encryption on Windows	CO2
26	Network Troubleshooting using Nmap	CO2
27	Intercept Network Traffic using Wireshark and tcpdump	CO4
28	Configure, View, and Analyze Windows Event Logs	CO2
29	Analysis and Validation of Malware Incident	CO5
30	View Contents of Forensic Image File	CO2

Textbooks and Reading Materials

- 1. "Computer Security: Principles and Practice" by William Stallings and Lawrie Brown This comprehensive textbook covers a wide range of security concepts and practical implementations, including access control, network security, malware and vulnerabilities.
- 2. **"Hacking: The Art of Exploitation, 2nd Edition"** by Jon Erickson A hands-on guide to the techniques of exploits and hacking, this book provides a deep understanding of how software is created, how it can be exploited, and how to prevent such attacks.
- 3. "Network Security Essentials: Applications and Standards" by William Stallings Offers detailed coverage of network security principles, including detailed discussions on cryptographic protocols used in various security systems and applications.
- 4. "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws" by Dafydd Stuttard and Marcus Pinto This book provides a detailed look into the methods and tools

used to penetrate web applications, perfect for courses involving SQL injections and other webbased vulnerabilities.

5. "Guide to Computer Forensics and Investigations" by Bill Nelson, Amelia Phillips, Christopher Steuart - This textbook provides a thorough grounding in computer forensics, covering tools, procedures, and legal issues, relevant for experiments involving malware analysis and forensic examination.

Software and Development Tools

- Kali Linux A Linux distribution designed for digital forensics and penetration testing. It includes a vast array of tools for network analysis, vulnerability scanning, and hacking, such as Nmap, Metasploit, and Wireshark.
- 2. **Burp Suite** An integrated platform for performing security testing of web applications. It is highly useful for detecting SQL injection, XSS, and other vulnerabilities as mentioned in your experiments.
- 3. **Microsoft SQL Server and SQLMap -** SQL Server for hosting databases that can be used in SQL injection training, combined with SQLMap, an automatic SQL injection and database takeover tool, ideal for practical SQL injection experiments.
- 4. **Docker along with Docker Bench for Security -** Docker allows for the creation of isolated environments for testing and Docker Bench for Security checks for all the common best practices around deploying Docker containers in production.
- Miradore MDM Solution and OpenSSL Miradore for enterprise mobile security management, essential for experiments involving mobile security configurations. OpenSSL is a robust tool for implementing TLS/SSL to secure IoT device communication and manage certificates.

Online Platforms and Communities

- 1. **Cybrary** A comprehensive platform offering courses and labs in various cybersecurity topics including penetration testing, ethical hacking, and cybersecurity defense. Cybrary provides hands-on labs and community support, making it ideal for practical learning.
- 2. **Hack The Box** An online platform that provides a test environment for hacking and cybersecurity training. Users can access various machines and challenges designed to practice attack strategies and defensive mechanisms.
- 3. **Offensive Security Proving Grounds -** A platform designed by the creators of Kali Linux that offers various levels of virtual machines to practice penetration testing and security attacks. It's ideal for advanced learners looking to deepen their practical skills.

- TryHackMe A platform that offers gamified cybersecurity training through real-world scenarios. It's user-friendly for beginners and provides a structured path through various cybersecurity topics including network attacks and security practices.
- 5. **SecurityTube -** A video-based learning site that aggregates helpful tutorials and lectures on various cybersecurity topics. While it's less interactive than the other platforms, it's a great resource for understanding concepts and learning from experts through video content.

Evaluation Components	Weightage
Internal Marks (Practical) –	
I) Conduct of Experiment	10 Marks
II) Lab Records	10 Marks
III) Lab Participation	10 Marks
IV) Lab Project	20 Marks
External Marks (Practical): -	50 Marks
End term Practical Exam and Viva Voce	
Total	100 Marks

Evaluation Scheme (Laboratory):

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Practical Exam and Viva Voce separately to secure minimum passing grade).

Communication & Personality

Development

Program Name:	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Life Skills for Professionals	AEC007	3-0-0	3
- II			
Type of Course:	AEC-2		
Contact Hours	36		
Pre-requisite(s), if any:	1		

Course Perspective. The course enhances public speaking and presentation skills, helps students confidently convey ideas, information & build self-reliance and competence needed for career advancement. Personality assessments like the Johari Window and Myers & Briggs Type Indicator (MBTI) provide frameworks to enhance self-understanding, helps people increase their self-awareness, understand and appreciate differences in others and apply personality insights to improve their personal and professional effectiveness. Interpersonal skills included in the course deal with important topics like communication, teamwork and leadership, vital for professional success.

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Improving public speaking and presentation abilities to confidently convey ideas and information.
CO 2	Understanding the framework of Communication to augment oratory skills and written English communication, professional writing, and persuasive communication.
CO 3	Cultivating essential soft skills required at the different workplaces.
00 (N 4 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Developing self and others	No. of hours: 8
----------------	-----------------------------------	-----------------

Content Summary: Self Awareness, Personality Concepts (Personality Assessments -Johari Window,			
Myers & Brigg),	Self-Management, Self Esteem, Self-Efficacy, Interperson	al skills, mindset, grit and	
working in teams.			
Unit Number: 2	Title: Enhancing Reading and Writing Skills	No. of hours: 6	
Content Summary: Speed reading and its importance in competitive examinations, techniques for speed reading, note-taking, and critical analysis. Paragraph Writing, Essay and Summary writing, Business Letter, Email writing			
Unit Number: 3	Title:EffectiveCommunicationandPublicSpeaking	No. of hours: 7	
Content Summary: Communication Framework, barriers & overcoming these barriers, Group Discussions, Extempore & Public Speaking drills, to manage stage fright and anxiety. Structuring and organizing a presentation (Oral & PPT), Etiquettes, Grooming, Body Language and Conversation starters, TMAY.			
Unit Number: 4	Title: Career Guide and readiness	No. of hours: 15	
Content Summary: Cover Letter, ATS friendly resume, Elevator Pitch, Video Resume (Visume), Networking, Group Discussion, Mock Interviews. Capstone Project			

Learning Experiences

- 1. Interactive Lectures: Introduce advanced life skills concepts using PPTs and real-life scenarios.
- 2. **Conceptual Understanding**: Cover topics like emotional intelligence, conflict resolution, and leadership.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on real-world workplace challenges.
- 4. **Group Discussions**: Facilitate discussions on ethics, diversity, and effective communication in professional settings.
- 5. Guest Speakers: Invite industry leaders to share insights and experiences related to life skills.
- 6. Continuous Feedback: Implement quizzes and peer reviews to assess application of life skills.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign reflective essays on personal development and career aspirations.
- 2. **Workshops**: Facilitate hands-on sessions for practicing negotiation, networking, and public speaking skills.
- 3. Question Bank: Provide resources for self-assessment on advanced life skills development.
- 4. **Online Forums**: Create platforms for discussing personal growth and professional challenges.

- 5. Self-Study for Case Studies: Encourage independent research on successful professionals and their life skills.
- 6. **Collaborative Projects**: Organize group projects focused on community engagement and leadership initiatives.

Textbooks

- I) Aggarwal, R. S. (2014). Quantitative aptitude (Revised edition).
- II) Gladwell, M. (2021). Talking to strangers.
- III) Scott, S. (2004). Fierce conversations.

References

- "The 7 Habits of Highly Effective People" by Stephen R. Covey
- "Presentation Skills: The Essential Guide for Students" by Joan van Emden and Lucinda Becker
- "Emotional Intelligence: Why It Can Matter More Than IQ" by Daniel Goleman
- "Arithmetic for Competitive Examinations" by R.S. Aggarwal
- "The Art of Public Speaking" by Dale Carnegie

MINOR PROJECT-II

Program Name:	B. Tech CSE with specialization in Cybersecurity		
Course Name: Minor	Course Code	L-T-P	Credits
Project-II	ENSI252		2
Type of Course:	Proj-2		
Pre-requisite(s), if any: Fundamentals subjects of Computer Engineering			

Duration:

The minor project will last for **three** months.

Project Requirements:

1. Understanding of Societal Problems:

• Students must have a basic understanding of societal problems, the concerned domain, and relevant issues.

2. Critical Thinking and Problem Formulation:

• Students are expected to think critically about formulated problems and review existing solutions.

3. Data Gathering and ETL Activities:

• Students should gather relevant data and perform ETL (Extract, Transform, Load) activities to prepare the data for analysis.

4. Innovation and Entrepreneurship Focus:

• Students should develop innovative ideas or entrepreneurial solutions to address the identified problems.

5. Implementation (Optional):

While implementation of the proposed solutions is encouraged, it is not strictly required.
 The focus should be on idea development.

Guidelines:

1. Project Selection:

- Choose a societal problem relevant to the field of computer science and engineering.
- Ensure the problem is specific and well-defined.

2. Literature Review:

- Conduct a thorough review of existing literature and solutions related to the problem.
- Identify gaps in existing solutions and potential areas for further investigation.

3. Data Gathering and ETL:

- Collect relevant data from various sources.
- Perform ETL activities to clean, transform, and load the data for analysis.

4. Analysis and Critical Thinking:

- Analyze the problem critically, considering various perspectives and implications.
- Evaluate the effectiveness and limitations of current solutions.

5. Innovation and Idea Development:

- Develop innovative ideas or entrepreneurial solutions to address the identified problem.
- Focus on the feasibility, impact, and potential of the proposed solutions.

6. Documentation:

- Document the entire process, including problem identification, literature review, data gathering, ETL activities, analysis, and ideas.
- Use appropriate formats and standards for documentation.

7. Presentation:

- Prepare a presentation summarizing the problem, existing solutions, data analysis, and proposed ideas.
- Ensure the presentation is clear, concise, and well-structured.

Evaluation Criteria for Minor Project (Out of 100 Marks):

1. Understanding of Societal Problems (15 Marks):

- Comprehensive understanding of the problem: 15 marks
- Good understanding of the problem: 12 marks
- Basic understanding of the problem: 9 marks
- Poor understanding of the problem: 5 marks
- No understanding of the problem: 0 marks

2. Critical Thinking and Analysis (20 Marks):

- Exceptional critical thinking and analysis: 20 marks
- Good critical thinking and analysis: 15 marks
- Moderate critical thinking and analysis: 10 marks
- Basic critical thinking and analysis: 5 marks
- Poor critical thinking and analysis: 0 marks

3. Data Gathering and ETL Activities (20 Marks):

- Comprehensive and effective ETL activities: 20 marks
- Good ETL activities: 15 marks
- Moderate ETL activities: 10 marks

- Basic ETL activities: 5 marks
- Poor ETL activities: 0 marks
- 4. Innovation and Idea Development (25 Marks):
- Highly innovative and feasible ideas: 25 marks
- Good innovative ideas: 20 marks
- Moderate innovative ideas: 15 marks
- Basic innovative ideas: 10 marks
- Poor innovative ideas: 5 marks
- No innovative ideas: 0 marks

5. Documentation Quality (10 Marks):

- Well-structured and detailed documentation: 10 marks
- Moderately structured documentation: 7 marks
- Poorly structured documentation: 3 marks
- No documentation: 0 marks

6. **Presentation (10 Marks):**

- Clear, concise, and engaging presentation: 10 marks
- Clear but less engaging presentation: 7 marks
- o Somewhat clear and engaging presentation: 3 marks
- Unclear and disengaging presentation: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

1. Understand Societal Issues:

• Demonstrate a basic understanding of societal problems and relevant issues within the concerned domain.

2. Critical Thinking:

• Think critically about formulated problems and existing solutions.

3. Data Management:

• Gather relevant data and perform ETL activities to prepare the data for analysis.

4. Innovation and Entrepreneurship:

• Develop innovative ideas or entrepreneurial solutions to address identified problems.

5. Literature Review:

- Conduct comprehensive literature reviews and identify gaps in existing solutions.
- 6. Documentation:

• Document findings and analysis in a well-structured and appropriate format.

7. Presentation Skills:

• Present findings and analysis effectively, using clear and concise communication skills.

8. Problem Analysis:

• Analyze problems from various perspectives and evaluate the effectiveness of existing solutions.

9. **Professional Development:**

• Develop skills in research, analysis, documentation, and presentation, contributing to overall professional growth.

Learning Experiences

Classroom Learning Experience

- 1. **Project Kickoff**: Introduce project objectives and expectations through orientation sessions.
- 2. **Research Methodology**: Cover essential techniques for conducting research and project planning.
- 3. Problem-Solving Sessions: Conduct workshops focused on overcoming project-related challenges.
- 4. **Progress Presentations**: Facilitate sessions for students to present their project updates and receive feedback.
- 5. Group Collaboration: Encourage teamwork to enhance project development and idea exchange.
- 6. **Continuous Feedback**: Implement peer reviews and mentor check-ins to assess progress and learning.

Outside Classroom Learning Experience

- 1. **Independent Research**: Assign tasks that require in-depth research and exploration of project topics.
- 2. **Hands-On Implementation**: Facilitate practical application of project concepts in real-world scenarios.
- 3. Documentation: Encourage students to maintain detailed project logs and documentation.
- 4. **Online Collaboration Tools**: Create platforms for students to communicate and share resources effectively.
- 5. Self-Assessment: Provide tools for students to evaluate their contributions and project outcomes.
- 6. **Final Presentation**: Organize sessions for students to present their completed projects to peers and faculty.

COMPETITIVE CODING -II

Program Name:	B. Tech CSE with spec	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits	
COMPETITIVE CODING -II		2-0-0	0	
Type of Course:	AUDIT-II			
Contact Hours	30			

Course Outcomes

CO1	Understanding fundamental tree structures, including AVL trees, and their balancing
	mechanisms.
CO2	Applying graph representations (adjacency matrix and adjacency list) to solve basic graph
	traversal problems.
CO3	Implementing shortest path algorithms such as Dijkstra's algorithm and Bellman-Ford.
CO4	Exploring dynamic programming concepts, including memoization and tabulation, to solve
	classic problems.

		No. of hours:	
Unit Number: 1	Title: Object-Oriented Programming Concepts	8	
Content:			
OOP Basics: Encapsul	ation, Inheritance, Polymorphism, Class Design and Object Creation	ation	
C++ OOP Concepts	S: Classes and Objects, Constructors/Destructors, Operator	r Overloading,	
Inheritance, Virtual Functions			
Java OOP Concepts	s: Classes and Objects, Constructors, Method Overloadin	g, Inheritance,	
Polymorphism, Abstract Classes, Interfaces			
Python OOP Concepts: Classes and Objects, Constructors, Method Overloading (via default			
arguments), Inheritance, Polymorphism, Multiple Inheritance			

Unit Number: 2	Title: Linked Lists, Stacks and Queues	No. of hours: 8		
Content:				
Linked Lists				
 Singly and dou 	bly linked lists: Creation, insertion, deletion, traversal.			
 Key Problems: 	Reversing a linked list (iterative and recursive), detecting cycle	es using Floyd's		
cycle-finding a	lgorithm.			
Stacks and Queues :				
 Stack operation 	ns: Push, pop, top, isEmpty.			
 Queue operation 	ons: Enqueue, dequeue, front, isEmpty.			
Applications:	Parentheses matching, queue-based problems (LeetCode cha	llenge - sliding		
window proble	ms).			
		No. of hours:		
Unit Number: 3	Title: Sorting & Searching	8		
Content				
Basic Sorting Algorithm	ns			
• Implementing	Bubble Sort, Selection Sort, Insertion Sort.			
• Understanding	the time complexities and use cases of each algorithm.			
• Key Problems:	• Key Problems: Sorting small arrays, finding the median, custom sorting based on conditions			
(frequent Leet	Code challenge).			
Advanced Sorting Algo	prithms			
• Implementing	Merge Sort, Quick Sort, Heap Sort.			
Binary Search				
• Implementing	binary search for sorted arrays.			
Applications: F	• Applications: Finding an element in a sorted array, finding the position to insert an element,			
LeetCode challenges like searching for ranges.				
Unit Number: 4	Title: Trees	No. of hours:		
		6		
Content:				
Basic Tree Concepts				

L

- Introduction to tree terminology and operations.
- Tree Traversals: Preorder, inorder, postorder.
- Key Problems: Printing all elements in a tree, finding the depth of a tree.

Binary Trees

- Basic operations on binary trees: Insertion, deletion, searching.
- Key Problems: Finding the height of a binary tree, counting leaf nodes, lowest common ancestor (common LeetCode challenges).

Binary Search Trees

Understanding BST properties: Every left subtree is smaller, and every right subtree is larger.

Learning Experiences:

Classroom Learning Experience

- 1. Advanced Lectures: Introduce complex algorithms and techniques using PPTs and coding demonstrations.
- 2. Algorithm Workshops: Cover advanced topics like dynamic programming, graph algorithms, and optimization strategies.
- 3. **Intensive Problem-Solving Sessions**: Conduct in-class exercises focused on challenging competitive coding problems.
- 4. Mock Contests: Organize timed coding competitions to simulate real contest environments.
- 5. **Group Strategy Discussions**: Facilitate discussions on effective problem-solving strategies and approaches.
- 6. Continuous Feedback: Implement performance assessments and code reviews to enhance skills.

Outside Classroom Learning Experience

- 1. **Practice Assignments**: Assign challenging coding problems for independent practice from various platforms.
- 2. Online Competitions: Encourage participation in external coding contests and hackathons.
- 3. Question Bank: Provide a repository of advanced practice problems for self-assessment.
- 4. **Online Collaboration**: Create forums for students to discuss problems and share solutions.
- 5. **Self-Study Resources**: Recommend books and online courses focused on advanced algorithms and techniques.
- 6. **Collaborative Projects**: Organize group projects that involve developing coding solutions for complex problems.

Textbooks:

- "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- "Data Structures and Algorithms Made Easy" by Narasimha Karumanchi

Online References:

- 1. GeeksforGeeks:
 - Offers articles on advanced data structures like self-balancing trees, segment trees, tries, and more¹.
 - Link to GeeksforGeeks

2. Coursera:

- Various data structures and algorithms courses available online.
- Examples include "Data Structures and Algorithms" from the University of California San Diego and "Algorithms, Part I" from Princeton University³.
- o Link to Coursera

3. Princeton University References:

- Provides a list of seminal papers and advanced resources.
- Includes textbooks like "Algorithms, 4th Edition" by Robert Sedgewick and Kevin Wayne⁴.

Problem Statement	
Object-Oriented Programming Concepts	
 Design a Parking Lot System using OOP concepts (Classes, Objects, Inheritance, Polymorphism). 	CO1
2. Implement a Student Management System with Classes and Objects.	CO1
3. Create a Banking System with Constructors and Destructors.	CO1
4. Implement Method Overloading and Overriding in a chosen language.	CO1
5. Demonstrate Multiple Inheritance with a practical example.	CO1
6. Design a Library Management System with OOP principles.	CO1
7. Use Virtual Functions to implement polymorphism.	CO1
8. Implement Abstract Classes and Interfaces for a Payment System.	CO1

Lab Experiments

Problem Statement		
9. Create a simple calculator with Operator Overloading.	CO1	
10. Build a Polymorphic class hierarchy (e.g., Shapes) to showcase polymorphism.	CO1	
Linked Lists, Stacks, and Queues		
11. Reverse a Linked List (Iterative and Recursive).	CO2	
12. Detect a cycle in a Linked List using Floyd's Cycle-Finding Algorithm.	CO2	
13. Implement basic operations on a Singly Linked List (Insertion, Deletion).	CO2	
14. Implement and traverse a Doubly Linked List.	CO2	
15. Implement Stack operations (Push, Pop, Top) using arrays or linked lists.	CO2	
16. Implement Queue operations (Enqueue, Dequeue, Front) using arrays or linked lists.	CO2	
17. Solve the Parentheses Matching problem using Stack.	CO2	
18. Implement Sliding Window Maximum using Deque.	CO2	
19. Check for balanced parentheses using Stack.	CO2	
20. Design a Circular Queue using linked list or array.	CO2	
Sorting & Searching		
21. Implement Bubble Sort and analyze its time complexity.	CO3	
22. Implement Merge Sort to sort an array of integers.	CO3	
23. Find the Kth largest element in an array using Quick Sort.	CO3	
24. Perform Binary Search to find an element in a sorted array.	CO3	
25. Implement Heap Sort to sort a list of elements.	CO3	
26. Find the position to insert an element in a sorted array using Binary Search.	CO3	
27. Implement a custom sort based on frequency of elements.	CO3	
28. Compare sorting results using Insertion Sort and Bubble Sort.	CO3	
Trees		
29. Perform Preorder, Inorder, and Postorder Traversal on a Binary Tree.	CO4	
30. Find the Lowest Common Ancestor in a Binary Search Tree.	CO4	

Problem Statement	Mapped
i robiem statement	COs
Trees	
31. Implement an algorithm to check if a Binary Tree is balanced.	CO4
32. Determine if two Binary Trees are identical.	CO4
33. Find the maximum path sum in a Binary Tree.	CO4
34. Convert a Binary Search Tree to a Greater Tree (where each node's value is replaced by	CO4
the sum of all greater values).	
35. Count the number of nodes in a complete Binary Tree.	CO4
36. Flatten a Binary Tree to a linked list using preorder traversal.	CO4
37. Serialize and deserialize a Binary Tree.	CO4
38. Find the diameter of a Binary Tree (the longest path between any two nodes).	CO4
39. Check if a Binary Tree is a subtree of another Binary Tree.	CO4
40. Find the level order traversal of a Binary Tree (Breadth-First Search).	CO4

SEMESTER: V

THEORY OF COMPUTATION

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name: Theory of	Course Code	L-T-P	Credits	Contact Hours
Computation	ENCS301	3-1-0	4	40
Type of Course:	Major-18			
Pre-requisite(s), if any: Basic Mathematics and Programming Concepts				

Course Perspective: The course provides a comprehensive foundation in the theoretical aspects of computer science, essential for understanding the underlying principles of various computational processes and languages. This course delves into the formalization and analysis of computation, encompassing finite automata, pushdown automata, context-free grammars, Turing machines, and the Chomsky hierarchy. The course is divided into 4 modules:

- a) Introduction to Finite Automata
- b) Pushdown Automata and Context-Free Languages
- c) Chomsky Hierarchy and Turing Machines
- d) Code Generation and Optimization

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Remembering the fundamental concepts and terminology of automata theory.
CO 2	Understanding the relationships and equivalences between various computational models.
CO 3	Applying conversion techniques between different forms of automata and grammars.
CO 4	Analyzing the properties and limitations of formal languages using theoretical tools.
CO 5	Evaluating the decidability and complexity of computational problems.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Finite automata	No. of hours: 10	
Content:			
Finite Automata: I	Review of Automata, Description of Finite automata, repr	resentation of FA,	
Deterministic Finit	e Automata(DFA), Non-deterministic Finite Automata((NFA), Equivalence of NFA and	
DFA Finite Automa	ata with Epsilon Transitions, Minimization of Determinis	tic Finite Automata	
Finite Automata v	with output: - Moore machine and Mealy Machine, C	onversion of Moore machine to	
Mealy Machine & V	Vice-Versa		
Applications of Fin	ite Automata		
Unit Number: 2	Title: Regular Expression and Languages	No. of hours: 10	
Content:			
Regular Expressio	ns: Introduction, Identities of Regular Expressions, Arde	n's theorem state and prove	
Finite Automata a	and Regular Expressions: Converting from DFA's to	Regular Expressions and Vive-	
Versa			
Pumping Lemma	for Regular Sets: Introduction, Applications of the pun	nping lemma- Proving languages	
not to be regular, C	losure properties of regular languages		
Introduction to Fo	rmal languages: Definition of a Grammar, Derivations a	and the Language Generated by a	
Grammar, Chomsky	y Classification of Languages		
Unit Number: 3	Title: Context-Free Languages and Pushdown	No. of hours: 12	
	Automata (PDA)		
Content:			
Context Free Gra	mmar (CFG): Properties of context free grammar, Der	ivations using a grammar, Parse	
Trees, Ambiguity in	n context free grammar		
Simplification of Context Free grammar: Reduced grammar, Removal of useless Symbols and unit			
production			
Normal Forms of CFG: Chomsky Normal Form (CNF), Greibach Normal Form (GNF)			
Pumping lemma for CFG.			
Push down Automata (PDA): Definition, acceptance by PDA, Types of PDA: Deterministic PDA, Non-			
Deterministic PDA			
Equivalence of CFL and PDA, interconversion			
Unit Number: 4	Title: Turing Machine and Undecidability	No. of hours: 8	

Content Summary:

Turing Machines: Definition, types, and language acceptors, Design of Turing Machines

Universal Turing Machine and its implications

Decidability and Undecidability

Halting problem of Turing Machine, Post-Correspondence Problem.

Properties of Recursive and Recursively Enumerable Languages

Learning Experience

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts in the theory of computation using PPTs and examples.
- 2. **Conceptual Understanding**: Cover topics like automata theory, formal languages, and Turing machines.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on designing automata and proving language properties.
- 4. Case Studies: Analyze real-world applications of computational theory in computer science.
- 5. Group Discussions: Facilitate discussions on complexity theory and computability.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of theoretical concepts.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects that require applying theoretical concepts to practical problems.
- 2. Lab Projects: Facilitate hands-on tasks involving simulations of automata and formal languages.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on computation theory topics.
- 4. **Online Forums**: Create platforms for discussing challenges and sharing solutions related to computation theory.
- 5. **Self-Study for Case Studies**: Encourage independent research on advancements and applications in computation theory.
- 6. **Collaborative Projects**: Organize group projects focused on exploring complex theoretical concepts and their implications.

Text Books:

- 1. Hopcroaft J.E., Ullman, J.D., and Rajiv Motwani, 2001, Introduction to Automata Theory, Language & Computations, 3rdEd.
- 2. Mishra K.L.P.& N. Chandrasekaran, 2000, Theory of Computer Science Automata, Languages and Computation,5th Ed., 2000, PHI

Reference Books

- 1. H.R. Lewis and C.H. Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson Education.
- 2. Peter Linz, 2001, Introduction to formal Languages & Automata, 3rd Ed., NarosaPubl.
- 3. J. Martin, "Introduction to Languages and the Theory of computation" Third Edition, Tata Mc Graw Hill.

Additional Readings:

Online Learning Resources for "Theory of Computation"

- 2. **NPTEL Theory of Computation**
 - Online course by IITs on the fundamentals of the theory of computation.
 - Link: <u>NPTEL-Theory of Computation</u>

3. Coursera - Automata Theory by Stanford University

- This course covers the fundamentals of automata theory, including finite automata, regular expressions, and Turing machines.
- Link: <u>Coursera Automata Theory</u>

4. MIT OpenCourseWare - Theory of Computation

- Advanced course materials from MIT covering various topics in the theory of computation.
- Link: MIT OpenCourseWare Theory of Computation

OPERATING SYSTEMS

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name: OPERATING	Course Code	L-T-P	Credits	Contact Hours
SYSTEMS	ENCS303	3-1-0	4	40
Type of Course:	Major-19	·	·	
Pre-requisite(s), if any: Basics of programming and Computer Fundamentals				

Course Perspective. This course provides a comprehensive introduction to the fundamental principles and practices of operating systems. It covers essential concepts such as process management, memory management, file systems, and I/O systems, as well as more advanced topics like distributed operating systems and concurrent systems. Through this course, students will gain a deep understanding of how operating systems function, how they manage hardware resources, and how they provide services to applications. The course also emphasizes practical skills in implementing and managing operating system components and handling challenges such as process synchronization, deadlocks, and system security. By the end of the course, students will be well-equipped to apply these concepts in designing and optimizing operating systems in various computing environments. The course is divided into 4 modules:

- a) Introduction to Operating Systems and Process
- b) Memory & File Management
- c) Process Synchronization, Deadlocks & I/O Systems
- d) Distributed Operating Systems & Concurrent Systems

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the fundamental concepts of operating systems, including their structure and types.
CO 2	Analyzing process scheduling algorithms and their impact on system performance.
CO 3	Implementing and manage memory allocation, paging, and virtual memory techniques.

CO 4	Examining process synchronization mechanisms and handle deadlocks in an operating system environment.
CO 5	Developing distributed operating systems and concurrent systems with a focus on fault tolerance and recovery mechanisms.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Operating System, Process and CPU Scheduling	No. of hours: 10	
Introduction: Definition, Role, Types of Operating System, Batch Systems, multi programming, time-			
sharing, parallel, distributed and real-time systems, Operating system structure, Operating system			
components and services, System calls, System programs, Virtual machines.			
Processes: Process Concept, Process Scheduling, Operation on Processes, Cooperating Processes, Threads.			
CPU Scheduling:	Basic Concepts, Scheduling Criteria, Scheduling A	Algorithms, Multiple Processor	
Scheduling, Real-Time Scheduling.			

Unit Number: 2	Title: Threads, Synchronization, Deadlock and	No of hourse 10
	Memory Management	No. of hours: 10

Threads: overview, Benefits of threads, User and kernel threads, Multithreaded Models, Precedence Graph, Fork-Join, Cobegin-Coend construct.

Inter-process Communication and Synchronization: Background, The Critical-Section Problem, Synchronization Hardware, Semaphores, Classical Problems of Synchronization, Critical Regions, Monitors, Message Passing.

Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.

Memory Management: Background, Logical vs. Physical Address space, swapping, Contiguous allocation, Paging, Segmentation, Segmentation with Paging.

Unit Number: 3	Title: Virtual Memory, Device Management and	No of hours: 10
	Secondary-Storage Structure	

Virtual Memory: Demand Paging and its performance, Page-replacement Algorithms, Allocation of Frames, Thrashing, page size and other Considerations, Demand Segmentation.

Device Management: Techniques for Device Management, Dedicated Devices, Shared Devices, Virtual

Devices, Independent Device Operation, Buffering, Device Allocation Consideration.

Secondary-Storage Structure: Disk Structure, Disk Scheduling, Disk Management, Swap Space Management, Disk Reliability.

Unit Number: 4	Title: File-System Interface, implementation and	No of hours: 10
	Security	No. of hours: 10

File-System Interface: File Concept, Access Methods, Directory Structure.

File-System Implementation: Introduction, File-System Structure, Basic File System, Allocation Methods, Free-Space Management, Directory Implementation.

Security: Security problems, Goals of protection, Access matrix, Authentication, Program threats, System threats, Intrusion detection.

Learning Experiences

- Interactive Lectures: Introduce key concepts of operating systems using PPTs and real-world examples.
- Conceptual Understanding: Cover topics like process management, memory management, and file systems.
- Problem-Solving Sessions: Conduct in-class exercises focused on system calls and scheduling algorithms.
- **Case Studies**: Analyze real-world operating systems and their architectures.
- **Group Work**: Collaborate on projects that involve designing and implementing operating system components.
- Continuous Feedback: Implement quizzes and peer reviews to assess understanding of operating system principles.
- Outside Classroom Learning Experience
- **Theory Assignments**: Assign take-home projects requiring application of operating system concepts to practical scenarios.
- Lab Projects: Facilitate hands-on tasks involving system programming and OS simulations.
- Question Bank: Provide practice problems and resources for self-assessment on operating system topics.
- **Online Forums**: Create platforms for discussing operating system challenges and sharing solutions.
- Self-Study for Case Studies: Encourage independent research on current trends and technologies in operating systems.

Collaborative Projects: Organize group projects focused on solving real-world problems using operating system concepts.

Textbooks

- 1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Wiley
- 2. Modern Operating Systems, Andrew S. Tanenbaum and Herbert Bos, Pearson, 4th Edition, 2014.
- 3. Operating Systems: Internals and Design Principles, William Stallings, Pearson, 9th Edition, 2017.
- 4. Operating Systems: Three Easy Pieces, Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau Arpaci-Dusseau Books, 1st Edition, 2018

References

- 1. MukeshSinghal and N. G. Shivaratri, "Advanced Concepts in Operating Systems", McGrawHill, 2000
- 2. Abraham Silberschatz, Peter B. Galvin, G. Gagne, "Operating System Concepts", Sixth Addison Wesley Publishing Co., 2003.
- 3. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 4. Tannenbaum, "Operating Systems", PHI, 4th Edition.

Additional Readings:

Online Learning References :

I) MIT OpenCourseWare - Operating System Engineering

- a. Advanced course materials from MIT covering various topics in operating system design and implementation.
- b. Link: MIT OpenCourseWare Operating System Engineering

II) NPTEL - Operating System by IITs

- a. Online course by IITs providing in-depth coverage of operating system principles and practices.
- b. Link: <u>NPTEL Operating System</u>

OPERATING SYSTEM LAB

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name: OPERATING	Course Code	L-T-P	Credits	
SYSTEMS LAB	ENCS351	0-0-2	1	
Type of Course:	Major-22		i	
Pre-requisite(s), if any: Basics of pre-	ogramming			

Defined Course Outcomes

COs	Statements
CO 1	Implementing and analyze process creation, management, and CPU scheduling algorithms, demonstrating the ability to simulate an operating system environment.
CO 2	Developing and evaluate multithreaded applications, demonstrating synchronization, deadlock handling, and memory management techniques.
CO 3	Simulating virtual memory management, device management, and disk scheduling algorithms, showcasing the application of operating system concepts.
CO 4	Designing and implement secure file systems, demonstrating file operations, directory management, and access control mechanisms.

List of Experiments

Ex	Experiment Title	Mapped
No		CO/COs
1	Implement a program that simulates system calls for basic operations such as process creation,	CO1
	file manipulation, and device management. Demonstrate how system calls interact with the	
	operating system components and services.	
2	Develop a process scheduling simulation that demonstrates different CPU scheduling	CO1
	algorithms (FCFS, SJF, Round Robin, Priority Scheduling). Compare the performance of each	
	algorithm based on scheduling criteria such as turnaround time, waiting time, and response	
	time.	
3	Create a multi-threaded application to illustrate process operations, including creation,	CO1
	termination, and inter-process communication. Implement thread management to demonstrate	
	the concept of cooperating processes and the benefits of threading.	

K.R. MANGALAM UNIVERSITY

4	Implement a multi-threaded program to demonstrate the benefits of threads over single-	CO2
	threaded processes. Use different multithreading models such as user-level and kernel-level	
	threads and simulate various thread operations.	
5	Design and implement solutions for classical synchronization problems such as the Producer-	CO2
	Consumer problem, Readers-Writers problem, and Dining Philosophers problem using	
	semaphores, critical regions, and monitors.	
6	Create a simulation to detect and handle deadlocks in a system. Implement deadlock	CO2
	prevention, avoidance, and detection algorithms. Demonstrate recovery from deadlock	
	scenarios.	
7	Develop a memory management simulator that demonstrates different memory allocation	CO2
	techniques such as contiguous allocation, paging, and segmentation. Implement swapping and	
	address translation between logical and physical address spaces.	
8	Implement a demand paging system to simulate virtual memory management. Evaluate the	CO3
	performance of different page-replacement algorithms (FIFO, LRU, Optimal) and analyze the	
	effects of thrashing.	
9	Create a simulation for device management that includes buffering, device allocation, and	CO3
	handling dedicated, shared, and virtual devices. Demonstrate techniques for independent	
	device operation and management.	
10	Develop a disk scheduling simulator to compare the performance of different disk scheduling	CO3
	algorithms (FCFS, SSTF, SCAN, C-SCAN). Implement disk management techniques and	
	swap space management.	
11	Implement a file system simulator to demonstrate different file access methods (sequential,	CO4
	direct, indexed). Design a directory structure and simulate file operations such as creation,	
	deletion, reading, and writing.	
12	Develop a program to simulate file system implementation techniques, including different file	CO4
	allocation methods (contiguous, linked, indexed) and free-space management techniques.	
	Implement a basic file system and directory structure.	

CRYPTOGRAPHY

Department:	B. Tech	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits	Contact Hours		
Cryptography	ENCS307	4-0-0	2	40		
Type of Course:	Major-20)				
Pre-requisite(s), if	any: Networking Co	oncepts and	Basics of Mathen	natics		

Course Perspective: Cryptography is an indispensable tool for protecting information in computer systems. In this course students will learn the inner workings of cryptographic systems and how to correctly use them in real-world applications. The course begins with a detailed discussion of how two parties who have a shared secret key can communicate securely when a powerful adversary eavesdrops and tampers with traffic. Students will examine many deployed protocols and analyze mistakes in existing systems. The second half of the course discusses public-key techniques that let two parties generate a shared secret key. Throughout the course participants will be exposed to many exciting open problems in the field and work on fun (optional) programming projects. In a second course (Crypto II) we will cover

more advanced cryptographic tasks such as zero-knowledge, privacy mechanisms, and other forms of encryption. The course is divided into 4 modules:

- a) Introduction to Cryptography
- b) Cryptographic Security, Pseudo Randomness and Symmetric Key Ciphers
- c) Basics of Number Theory and Public-Key Cryptography
- d) More on Public-Key Cryptography, Hash Functions and Signature Schemes

The Course Outcomes (COs). On completion of the course the participants will be:

CO1	Understanding network security services and mechanisms.
CO2	Applying Concepts of Symmetrical and Asymmetrical cryptography.
CO3	Analyzing Data integrity, Authentication, Digital Signatures
CO4	Illustrating various network security applications, IPSec, Firewall, IDS, Web security,
	Email security, and malicious software etc.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number:1	Title: Introduction to Cryptography No. of					
		hours: 10				
Computer Security	Computer Security Concepts - The OSI Security Architecture - Security Attacks - Security Services and					
Mechanisms – A	Model for Network Security - Classical encryption tec	hniques: Substitution				
techniques, Trans	position techniques, Steganography - Foundations of modern	cryptography: Perfect				
security – Informa	tion Theory – Product Cryptosystem – Cryptanalysis.					
Unit Normhand 2	Titles Countermontie Country Drands	No. of				
Unit Number:2	Title: Cryptographic Security, Pseudo	NO. OI				
	Randomness and Symmetric Key Ciphers	hours: 10				
Content: Shannon ²	s theory, Perfect secrecy, Entropy, Spurious keys and unicity di	stance; Bit generators,				
Security of pseudorandom bit generators. Substitution-permutation networks, Data encryption standard						
(DES), Description and analysis of DES; Advanced encryption standard (AES), Description and analysis						
of AES: Stream ciphers, Trivium						
Unit Number:3	Title: Basics of Number Theory and Public-Key	No. of hours: 10				

Content:

Basics of number theory; Introduction to public-key cryptography, RSA cryptosystem, Implementing RSA; Primality testing, Legendre and Jacobi symbols, SolovayStrassen algorithm, MillerRabin algorithm; Square roots modulo n, Factoring algorithms, Pollard p 1 algorithm, Pollard rho algorithm, Dixon's random squares algorithm, Factoring algorithms in practice; Rabin cryptosystem and its security.

Unit Number:4	Title: More on Public-Key Cryptography, Hash	No. of
	Functions and Signature Schemes	hours: 10

Content:

Basics of finite fields; ElGamal cryptosystem, Algorithms for the discrete logarithm problem, Shanks' algorithm, Pollard rho discrete logarithm algorithm, Pohlig Hellman algorithm; Discrete logarithm algorithms in practice, Security of ElGamal systems, Bit security of discrete logarithms.

Hash functions and data integrity, SHA-3; RSA signature scheme, Security requirements for signature schemes, Signatures and Hash functions, ElGamal signature scheme, Security of ElGamal signature scheme, Certificates.

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key concepts in cryptography using PPTs and historical context.
- 2. **Conceptual Understanding**: Cover topics like symmetric/asymmetric encryption, hashing, and digital signatures.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on implementing cryptographic algorithms.
- 4. Case Studies: Analyze real-world applications and implications of cryptography in cybersecurity.
- 5. Group Discussions: Facilitate discussions on cryptographic protocols and their effectiveness.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of cryptographic principles.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects requiring application of cryptography concepts to practical scenarios.
- 2. Lab Projects: Facilitate hands-on tasks involving coding and testing cryptographic algorithms.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on cryptography topics.
- 4. **Online Forums**: Create platforms for discussing cryptography challenges and sharing solutions.

- 5. **Self-Study for Case Studies**: Encourage independent research on emerging trends and technologies in cryptography.
- 6. **Collaborative Projects**: Organize group projects focused on developing secure communication systems using cryptographic techniques.

Evaluation Scheme (Theory):

Evaluation Components	Weightage
Internal Marks (Theory)	
III) Continuous Assessment (30 Marks)	
(All the components to be evenly	
spaced)	
Project/ Quizzes/ Assignments and	
Essays/ Presentations/ Participation/ Case	
Studies/ Reflective Journals (minimum of	
five components to be evaluated)	30 Marks
IV) Internal Marks (Theory) – Mid	20 Marks
Term Exam	
External Marks (Theory): -	50 Marks
End term Examination	
Total	100 Marks

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Examination separately to secure minimum passing grade).

Text Books:

- 1. Jeffrey Hoffstein, Jill Pipher& Joseph H. Silverman (2014). An Introduction to Mathematical Cryptography (2ndedition). Springer.
- Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-Verlag.

References

- 1. Christof Paar& Jan Pelzl (2014). Understanding Cryptography. Springer.
- 2. Simon Rubinstein-Salzedo (2018). Cryptography. Springer.
- 3. Douglas R. Stinson & Maura B. Paterson (2019). Cryptography Theory and Practice

Additional Readings: Specify

Self-Learning Components:

1. Cryptographic Algorithm Implementation Workshops:

- **Description:** Set up workshops where students can code and implement various cryptographic algorithms like AES, DES, RSA, and ElGamal. This hands-on experience is invaluable for understanding the intricacies and challenges of cryptographic systems.
- **Resource:** Platforms like CryptoHack (<u>https://cryptohack.org/</u>) provide interactive challenges and tutorials that guide through the implementation of cryptographic algorithms.

2. Cryptanalysis Challenge Series:

- **Description:** Create a series of challenges where students attempt to break different cryptographic schemes using various cryptanalysis methods learned in class. This can range from simple Caesar ciphers to more complex systems like AES.
- **Resource:** Sites like MysteryTwister C3 (<u>https://www.mysterytwisterc3.org/</u>) offer a wide range of cryptographic puzzles that range in difficulty and type.

3. Virtual Labs for Cryptographic Techniques:

- **Description:** Use virtual labs to simulate real-world data protection scenarios where students must apply cryptographic techniques to secure and decrypt data.
- **Resource:** The SEED Labs project (<u>https://seedsecuritylabs.org/Labs_16.04/Crypto/</u>) provides comprehensive lab sessions that cover various aspects of cryptography and security.

4. Research Paper Reviews and Presentations:

- **Description:** Students select, review, and present recent research papers related to advanced topics in cryptography. This helps in understanding current trends and future directions in cryptographic research.
- **Resource:** Websites like Google Scholar (<u>https://scholar.google.com</u>) or IEEE Xplore (<u>https://ieeexplore.ieee.org/</u>) are valuable for finding recent cryptographic research papers.

Open-Source Society University (OSSU)

- OSSU Computer Science
 - OSSU provides an open-source curriculum for learning computer science. While it covers a broad range of topics in computer science, it includes resources for learning about encryption principles, threats to communication networks, and the implementation of security measures in networks.
 - Link: OSSU Computer Science

FUNDAMENTALS OF CLOUD COMPUTING AND ISSECURITY

Department:	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits	Contact Hours	
Fundamentals of Cloud Computing and its Security	ENCS309	4-0-0	4	40	
Type of Course:	Major-21				
Pre-requisite(s), if any: Inte	ntegration/Differentiation				

Course Perspective. This course aims to introduce students to the core concepts of cloud computing, its various models, and the principles of cloud security. Students will gain hands-on experience with cloud platforms, virtualization technologies, and security mechanisms to protect cloud-based systems and data. The course will also cover aspects of cyber security relevant to cloud environments. The course is divided into 4 modules:

- a) Introduction to Cloud Computing
- b) Cloud Security Fundamentals
- c) Cloud Data & Network Security
- d) Distributed Operating Systems & Concurrent System

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO1	Understanding the fundamentals of cloud computing and its service models.
CO2	Evaluating the security risks associated with cloud computing.

CO3	Analyzing the architectural components of cloud systems and services.							
CO4	Exploring	cyber	security challenges	specific	to	cloud	computing	and
	corresponding	g solution	S.					

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Cloud Computing	No. of hours: 8		
Content:				
Definition and cha	aracteristics of cloud computing, Cloud service models: Is	aaS, PaaS, SaaS, Deployment		
models: Public, Pr	ivate, Hybrid, Community clouds, Cloud Infrastructure and	l Virtualization		
Virtualization tec	hnologies: Hypervisors, Containers, Cloud data centers and	nd network architecture, Cloud		
storage models: Ob	ject storage, Block storage			
Unit Number: 2	Title: Cloud Security Fundamentals	No. of hours: 12		
Contonto				
Content:	demonstele. Cloud accurity shallon accound threats. Identity a	and Anneas Monorement (IAM)		
Cloud Security Fundamentals, Cloud security challenges and threats, Identity and Access Management (IAM)				
in the cloud, Encry	otion and key management,			
Cloud Security Se	ervices: Cloud security providers and tools, Intrusion Det	ection and Prevention Systems		
(IDPS) in the cloud	, Web Application Firewalls (WAF)			
Unit Number: 3		No. of hours: 10		
	Title: Cloud Data & Network Security			
Content:				
Cloud Data Security: Data privacy and compliance in the cloud, Data loss prevention and backup				
strategies, Data encryption techniques				
Cloud Network Security: Securing cloud communication channels, Virtual Private, Clouds (VPCs)				
and Network Access Control Lists (NACLs), Distributed Denial of Service(DDoS) protection				
Unit Number: 4	Title: Distributed Operating Systems & Concurrent	No. of hours: 10		
	System			

Content:

Cloud Security Management: Incident response and management in the cloud, Security monitoring and auditing, Cloud compliance and governance.

Cyber Security in Cloud Computing: Cloud-specific cyber threats and attacks, Cloud-based malware and ransomware, Security considerations for IoT devices in the cloud

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts of cloud computing and security using PPTs and real-world examples.
- 2. **Conceptual Understanding**: Cover topics like cloud service models (IaaS, PaaS, SaaS) and deployment models (public, private, hybrid).
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on security challenges in cloud environments.
- 4. Case Studies: Analyze real-world incidents of cloud security breaches and their implications.
- 5. Group Work: Collaborate on projects to design secure cloud solutions addressing specific business needs.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of cloud concepts and security measures.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign take-home projects applying cloud computing principles and security practices to practical scenarios.
- 2. Lab Projects: Facilitate hands-on tasks involving cloud service providers and security configurations.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on cloud computing and security topics.
- 4. **Online Forums**: Create platforms for discussing cloud computing challenges and sharing solutions.
- 5. **Self-Study for Case Studies**: Encourage independent research on current trends and best practices in cloud security.
- 6. **Collaborative Projects**: Organize group projects focused on developing secure applications for cloud environments.

Text Books:

- **R 1.** Cloud Computing: Concepts, Technology & Architecture" by Thomas Erl, Zaigham Mahmood, and Ricardo Puttini
- **R 2.** "Cloud Security: A Comprehensive Guide to Secure Cloud Computing" by Ronald L. Krutz and Russell Dean Vines
- **R 3.** "Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS)" by Michael J. Kavis

Self-Learning Components:

Students may enroll any of the following online coursesCoursera:

- Course: "Cloud Computing Specialization" offered by the University of Illinois at Urbana-Champaign.
- Course: "Google Cloud Platform Fundamentals: Core Infrastructure" by GoogleCloud.
- Course: "Cloud Computing for Enterprises" by the University of Maryland.
- Course: "AWS Certified Cloud Practitioner" by DolfinEd.
- Course: "Azure Fundamentals" by Alan Rodrigues.

FUNDAMENTALS OF CLOUD COMPUTING AND ITS SECURITY LAB

Department:	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Fundamentals of			
Cloud Computing and	ENCS353	0-0-2	1
its Security Lab			
Type of Course:	MAJOR-23		

Pre-requisite(s), if any: Basics of programming

Defined Course Outcomes

COs	Statements	
CO 1	Understanding how to set up access controls and user management in the cloud.	
CO 2	Applying encryption techniques to protect data in transit and at rest.	
CO 3	Configuring network security measures to safeguard cloud environments.	
	Applying best practices for securing cloud-based applications and data.	
CO 4		

Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
1	Deploy a simple web application on an IaaS cloud	CO1
	platform (e.g., AWS EC2 or Azure VM).	
2	Set up a PaaS environment (e.g., AWS Elastic Beanstalk	CO1
	or Google App Engine) to deploy a sample application.	
3	Use a SaaS application (e.g., Office 365 or Google	CO1
	Workspace) and explore its functionalities.	
4	Create and manage virtual machines using a hypervisor (e.g.,	CO1
	VirtualBox or VMware).	
5	Deploy a containerized application using Docker or	CO4
	Kubernetes on a cloud platform.	
6	Create IAM users and groups with appropriate	CO5
	permissions in a cloud provider.	
7	Configure Role-Based Access Control (RBAC) for	CO5
	different cloud resources.	
8	Encrypt sensitive data using cloud-native encryption	CO5
	services.	
9	Set up secure data storage using encrypted volumes or object	CO5
	storage.	
10	Implement data backup and recovery strategies.	CO1

11	Set up a Virtual Private Cloud (VPC) with subnets and network	CO5
	access control rules.	
12	Create a bastion host or jump box for secure remote	CO5
	access to instances.	
13	Configure a cloud-based firewall to control incoming and	CO5
	outgoing traffic.	
14	Set up monitoring and logging for cloud resources.	CO3
15	Generate and analyze cloud security logs.	CO3
16	Simulate a security incident and practice incident	CO3
	response procedures.	
17	Design and implement a disaster recovery plan for	CO4
	critical cloud services.	
18	Analyze cloud security architecture and identify	CO5
	potential vulnerabilities.	
19	Implement security best practices for cloud-native	CO1
	application development.	
20	Assess and enhance cloud security posture using	CO3
	industry-standard frameworks.	

Arithmetic & Reasoning Skills

Programme Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name: Arithmetic	Course Code	L-T-P	Credits	Contact Hours
& Reasoning Skills	AEC008	3-0-0	3	24
Type of Course:	AEC-3			
Pre-requisite(s), if any:				

Course Perspective: The course aims to improve basic arithmetic skills, speed, and accuracy in mental calculations, and logical reasoning. These abilities are essential for a strong math foundation, helping students succeed in academics and various practical fields.

The Course Outcomes (COs): On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding arithmetic algorithms required for solving mathematical problems.
CO 2	Applying arithmetic algorithms to improve proficiency in calculations.
CO 3	Analyzing cases, scenarios, contexts and variables, and understanding their inter-connections in a given problem.

CO 4	Evaluating & deciding approaches and algorithms to solve mathematical & reasoning problems.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Mathematical Essentials	No. of hours: 15	
Content: Table chart, Line graph, Bar graph, Pie chart			
Unit Number: 2	Title: Fundamentals of Logical Reasoning	No. of hours: 6	
Content: Blood Relations, Direction Sense, Coding Decoding			
Unit Number: 3	Title: Elementary Quantitative Skills	No. of hours: 18	
Content: Simple and Compound Interest, Average, Partnership, Time and Work, Time Speed & Distance			
Unit Number: 4	Title: Advanced Quantitative Skills	No. of hours: 6	
Content:			
Permutation & Combination, Probability			

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce advanced life skills concepts using PPTs and real-life scenarios.
- 2. **Conceptual Understanding**: Cover topics like strategic thinking, resilience, and ethical decisionmaking.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on real-world workplace dilemmas and solutions.
- 4. **Group Discussions**: Facilitate discussions on leadership styles, team dynamics, and conflict management.
- 5. **Guest Speakers**: Invite industry experts to share insights on personal and professional development.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess application of life skills in professional contexts.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign reflective essays on personal experiences and career aspirations.
- 2. **Workshops**: Facilitate hands-on sessions for practicing advanced communication and negotiation skills.
- 3. Question Bank: Provide resources for self-assessment on life skills development and application.
- 4. **Online Forums**: Create platforms for discussing personal growth challenges and sharing experiences.
- 5. **Self-Study for Case Studies**: Encourage independent research on successful professionals and their life skills.
- 6. **Collaborative Projects**: Organize group projects focused on community engagement and leadership initiatives.

Evaluation Scheme (Theory):

Evaluation Components	Weightage
Internal Marks (Theory)	
I) Continuous Assessment (30 Marks)	
(All the components to be evenly spaced)	
Project/ Quizzes/ Assignments and Essays/	
Presentations/ Participation/ Case Studies/	
Reflective Journals (minimum of five components	
to be evaluated)	30 Marks
II) Internal Marks (Theory) – Mid	20 Marks
Term Exam	
External Marks (Theory): -	50 Marks
End term Examination	
Total	100 Marks

Note: (It is compulsory for a student to secure 40% marks in Internal and End Term Examination separately to secure minimum passing grade).

References

- **R1.** Aggarwal, R. S. (2014). Quantitative aptitude (Revised edition).
- **R 2.** Gladwell, M. (2021). Talking to strangers.
- **R 3.** Scott, S. (2004). Fierce conversations.

SUMMER INTERNSHIP-II

Program Name:	B. Tech CSE with specialization in Cybersecurity		
Course Name: Summer	Course Code	L-T-P	Credits
Internship-II	ENSI351	0-0-0	2
Type of Course:	INT-2		
Pre-requisite(s), if any: NA			

Duration:

The internship will last for six weeks. It will take place after the completion of the 4th semester and before the commencement of the 5th semester.

Internship Options:

•

Students can choose from the following options:

- Industry Internship (Offline) or Internship in Renowned Institutions (Offline):
 - Students must produce a joining letter at the start and a relieving letter upon completion.

Report Submission and Evaluation:

- 1. **Report Preparation:**
 - Students must prepare a detailed report documenting their internship experience and submit it to the department. A copy of the report will be kept for departmental records.

2. Case Study/Project/Research Paper:

- Each student must complete one of the following as part of their internship outcome:
 - 1. A case study
 - 2. A project
 - 3. A research paper suitable for publication

3. Presentation:

• Students are required to present their learning outcomes and results from their summer internship as part of the evaluation process.

Evaluation Criteria for Summer Internship (Out of 100 Marks):

- 1. Relevance to Learning Outcomes (30 Marks)
 - Case Study/Project/Research Paper Relevance (15 Marks):
 - 1. Directly relates to core subjects: 15 marks
 - 2. Partially relates to core subjects: 10 marks
 - 3. Minimally relates to core subjects: 5 marks
 - 4. Not relevant: 0 marks

• Application of Theoretical Knowledge (15 Marks):

- 1. Extensive application of theoretical knowledge: 15 marks
- 2. Moderate application of theoretical knowledge: 10 marks
- 3. Minimal application of theoretical knowledge: 5 marks
- 4. No application of theoretical knowledge: 0 marks

2. Skill Acquisition (40 Marks)

- New Technical Skills Acquired (20 Marks):
 - 1. Highly relevant and advanced technical skills: 20 marks
 - 2. Moderately relevant technical skills: 15 marks

- 3. Basic technical skills: 10 marks
- 4. No new skills acquired: 0 marks

• Professional and Soft Skills Development (20 Marks):

- 1. Significant improvement in professional and soft skills: 20 marks
- 2. Moderate improvement in professional and soft skills: 15 marks
- 3. Basic improvement in professional and soft skills: 10 marks
- 4. No improvement: 0 marks

3. Report Quality (15 Marks)

• Structure and Organization (8 Marks):

- 1. Well-structured and organized report: 8 marks
- 2. Moderately structured report: 6 marks
- 3. Poorly structured report: 3 marks
- 4. No structure: 0 marks

• Clarity and Comprehensiveness (7 Marks):

- 1. Clear and comprehensive report: 7 marks
- 2. Moderately clear and comprehensive report: 5 marks
- 3. Vague and incomplete report: 2 marks
- 4. Incomprehensible report: 0 marks

4. Presentation (15 Marks)

• Content Delivery (8 Marks):

- 1. Clear, engaging, and thorough delivery: 8 marks
- 2. Clear but less engaging delivery: 6 marks
- 3. Somewhat clear and engaging delivery: 3 marks
- 4. Unclear and disengaging delivery: 0 marks

• Visual Aids and Communication Skills (7 Marks):

- 1. Effective use of visual aids and excellent communication skills: 7 marks
- 2. Moderate use of visual aids and good communication skills: 5 marks
- 3. Basic use of visual aids and fair communication skills: 2 marks
- 4. No use of visual aids and poor communication skills: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

1. Apply Theoretical Knowledge:

• Integrate and apply theoretical knowledge gained during coursework to real-world industry or research problems.

2. Develop Technical Skills:

• Acquire and demonstrate advanced technical skills relevant to the field of computer science and engineering through practical experience.

3. Conduct Independent Research:

 Execute independent research projects, including problem identification, literature review, methodology design, data collection, and analysis.

4. Prepare Professional Reports:

• Compile comprehensive and well-structured reports that document the internship experience, project details, research findings, and conclusions.

5. Enhance Problem-Solving Abilities:

• Develop enhanced problem-solving and critical thinking skills by tackling practical challenges encountered during the internship.

6. Improve Professional and Soft Skills:

• Exhibit improved professional and soft skills, including communication, teamwork, time management, and adaptability in a professional setting.

7. Present Findings Effectively:

 Deliver clear and engaging presentations to effectively communicate project outcomes, research findings, and acquired knowledge to peers and faculty members.

Learning Experiences

Classroom Learning Experience

- 1. Orientation Sessions: Introduce internship objectives, expectations, and assessment criteria.
- 2. **Skill Development Workshops**: Cover essential professional skills such as communication, teamwork, and time management.
- 3. **Project Planning Guidance**: Assist students in developing project proposals aligned with internship goals.
- 4. **Progress Presentations**: Facilitate sessions for students to present updates and receive constructive feedback.
- 5. Group Discussions: Encourage sharing of challenges and solutions experienced during internships.
- 6. **Continuous Feedback**: Implement regular check-ins and mentor evaluations to assess student progress.

Outside Classroom Learning Experience

- 1. Internship Placement: Engage students in real-world work environments to apply learned skills.
- 2. **Reflective Journals**: Encourage students to document experiences, challenges, and lessons learned throughout the internship.
- 3. **Project Implementation**: Work on assigned projects and tasks within the organization, applying theoretical knowledge.
- 4. **Networking Opportunities**: Create opportunities for students to connect with industry professionals and peers.
- 5. **Self-Assessment**: Provide tools for students to evaluate their performance and contributions during the internship.
- 6. **Final Presentations**: Organize sessions for students to showcase their internship experiences and project outcomes to faculty and peers.

COMPETITIVE CODING -III

Program Name:	B. Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
COMPETITIVE CODING -III		2-0-0	0
Type of Course:	AUDIT-3		
Contact Hours	30		
Version			

Course Outcomes

CO1	Analyzing and writing SQL queries to retrieve, modify, and optimize data in relational
	databases.
CO2	Implementing efficient tree-based data structures like AVL, B Trees, and Splay Trees to solve
	computational problems.
CO3	Developing solutions for optimization problems using greedy algorithms and dynamic
	programming approaches.
CO4	Evaluating graph algorithms for traversing, searching, and finding shortest paths in complex
	graph structures.

Unit Number: 1	Title: SQL & PL/SQL	No. of hours: 8	
Content:		1	
Introduction to D	tabases and SQL:		
o Ui	derstand relational databases, tables, and SQL queries.		
o Pr	ctice SELECT, INSERT, UPDATE, DELETE statements.		
Joins and Subque	ies:		
• M	ster INNER JOIN, LEFT JOIN, RIGHT JOIN, and self-joins.		
o Le	rn about subqueries and correlated subqueries.		
Indexes and Query Optimization:			
o Ex	olore indexing techniques (B-tree, hash indexes).		
o Oj	imize SQL queries for performance.		
PL/SQL Basics:			
o In	oduce PL/SQL (Procedural Language/Structured Query Language)	ge).	

• Write basic PL/SQL blocks, loops, and conditional statements			
Unit Number: 2	Title: Height Balanced Tree Concepts	No. of hours: 8	
Content:			
AVL Trees: Definiti	on and Properties, Rotations , AVL Tree Operations (Inser	tion, Deletion, Lookup),	
Complexity Analysis			
B Trees : Definition a	and Properties, B Tree Operations, Complexity Analysis, Appl	ications in Databases and	
File Systems			
B + Trees: Definition	and Properties, B+ Tree Operations, Complexity Analysis		
Splay Trees: Definit	ion and Properties, Splaying Operation, Splay Tree Operation	ions (Insertion, Deletion,	
Lookup), Complexity	Analysis		
Applications of Hei	ght Balanced Trees: Use in Databases (Indexing), Use i	n Memory Management	
(Allocators)			
Unit Number: 3	Title: Greedy Design Strategy and Dynamic	No. of hours: 8	
	Programming		
Content:			
Greedy Algorithms:	Definition and Characteristics, Greedy Choice Property, Optim	al Substructure	
Dynamic Programm	ing: Definition and Characteristics, Optimal Substructure, O	verlapping Subproblems,	
Comparison with Gree	edy Algorithms		
Greedy Algorithms			
Basic Greedy Algorithms: Activity Selection Problem, Huffman Coding, Kruskal's Algorithm, Prim's			
Algorithm, Fractional	Knapsack Problem		
Complexity Analysis: Time Complexity, Proof of Optimality			
Dynamic Programming			
Basic Dynamic Programming Problems: Fibonacci Sequence (Memoization vs. Tabulation), 0/1 Knapsack			
Problem, Longest Common Subsequence (LCS), Matrix Chain Multiplication			
Unit Number: 4	Title: Graph Algorithms	No. of hours: 6	
Content:			
Graph Representations:			
 Representing graphs using adjacency matrix and adjacency list. 			

• Solving basic graph traversal problems.

Breadth-First Search (BFS):

- Implementing BFS for finding the shortest path in unweighted graphs.
- Applications include finding connected components.

Depth-First Search (DFS):

• Implementing DFS for tasks like topological sorting and cycle detection.

Shortest Path Algorithms

Dijkstra's Algorithm:

- Implementing Dijkstra's algorithm for finding shortest paths in weighted graphs.
- Using priority queues for efficient computation.

Bellman-Ford Algorithm:

- Handling negative weights with the Bellman-Ford algorithm.
- Detecting negative weight cycles.

Lab Experiments

Problem Statement	Mapped
	COs
SQL & PL/SQL	
1. Write an SQL query to find the department with the highest average salary.	CO1
2. Write a query to find all employees who earn more than their managers.	CO1
3. Retrieve the top three salaries from the "employees" table.	CO1
4. Write an SQL query to find employees who have been in the company for more than 5	CO1
years.	1
5. Write a query to delete duplicate rows from a table without using temporary tables.	CO1
6. Fetch all records where the customer ordered more than once from the "orders" table.	CO1
7. Find the name of departments with more than 10 employees using a JOIN between "employees" and "departments".	CO2
8. Write a query to retrieve all customers who ordered more than the average number of orders using subqueries.	CO2

Problem Statement	
	COs
9. Write a query to find the second highest salary of employees using a subquery.	CO2
10. Optimize the performance of a query that fetches all orders placed in the last 30 days from	CO3
the "orders" table using indexing.	05
11. Use indexing to speed up searches on the "products" table and compare the execution	CO3
time before and after indexing.	05
12. Write a PL/SQL block to display the Fibonacci sequence up to a given number using	CO4
loops.	
13. Create a PL/SQL block that calculates the factorial of a number using recursion.	CO4
Height Balanced Tree Concepts	
14. Implement an AVL Tree and insert a series of elements into it. Ensure the tree remains	CO5
balanced after each insertion.	COS
15. Write a function to check if a given AVL Tree is height-balanced.	CO5
16. Perform AVL Tree deletion and ensure rebalancing using rotations.	CO5
17. Implement an AVL Tree lookup operation and calculate its time complexity.	CO5
18. Implement insertion operations in a B Tree and verify the tree's structure after each	COG
insertion.	000
19. Write a function to search for an element in a B Tree and trace the steps of the search.	CO6
20. Implement deletion operations in a B Tree and verify rebalancing after each deletion.	CO6
21. Perform insertion and deletion operations in a B+ Tree and trace the changes in the tree	CO6
structure.	
22. Demonstrate the application of B Trees in database indexing with a small dataset.	CO6
23. Implement a splay tree and observe the behavior of nodes being splayed to the root after	COG
lookups.	000
24. Compare the performance of AVL Trees, B Trees, and Splay Trees for a series of random	CO6
insertions.	
Greedy Design Strategy and Dynamic Programming	
25. Solve the Activity Selection Problem using a greedy algorithm.	CO7

Problem Statement	Mapped
	COs
26. Write a function to implement Huffman coding for a string of characters and display the encoded output.	CO7
27. Implement Kruskal's algorithm for finding the minimum spanning tree of a graph.	CO7
28. Solve the Fractional Knapsack Problem using a greedy approach.	CO7
29. Solve the 0/1 Knapsack Problem using dynamic programming.	CO8
30. Write a program to find the nth Fibonacci number using memoization and compare it with the iterative approach.	CO8
31. Implement dynamic programming to solve the Longest Common Subsequence (LCS) problem.	CO8
32. Solve the Matrix Chain Multiplication problem using dynamic programming and analyze the time complexity.	CO8
Graph Algorithms	
33. Implement a graph using an adjacency list and perform Depth-First Search (DFS) to detect cycles.	CO9
34. Implement Breadth-First Search (BFS) to find all connected components in an unweighted graph.	CO9
35. Solve a shortest-path problem in an unweighted graph using BFS.	CO9
36. Write a program to implement Dijkstra's algorithm to find the shortest path in a weighted graph.	CO10
37. Implement Bellman-Ford algorithm to find shortest paths in a graph with negative weights.	CO10
38. Detect negative weight cycles in a graph using the Bellman-Ford algorithm.	CO10
39. Perform topological sorting of a directed graph using DFS.	CO9
40. Solve a shortest-path problem using Dijkstra's algorithm with priority queues and analyze the time complexity.	CO10

SEMESTER: VI

COMPUTER ORGANIZATION &

ARCHITECTURE

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Computer	ENCS302	3-1-0	4	40
Organization &				
Architecture				
Type of Course:	Major-24			
Pre-requisite(s), if any: Concepts of Digital Electronics				

Course Perspective: The course provides an in-depth understanding of the structural and operational principles of computer systems. It explores the intricate details of computer architecture, bridging the gap between high-level programming and hardware design. Students will learn about the functional units of a computer, instruction set architectures, processor design, memory hierarchy, and I/O systems. This knowledge is crucial for designing efficient, high-performance computing systems and understanding the trade-offs in hardware and software design. The course is divided into 4 units:

- 1. Introduction
- 2. Instruction Set Architecture (RISC-V)
- 3. The Processor
- 4. Memory hierarchy, Storage, and I/O

Course Outcomes (COs):	On completion of the co	ourse the participants will be able	to:
-------------------------------	-------------------------	-------------------------------------	-----

COs	Statements
CO 1	Understanding the basics of instructions sets and their impact on processor design.
CO 2	Demonstrating an understanding of the design of the functional units of a digital computer system

CO 3	Evaluating cost performance and design trade-offs in designing and constructing a computer processor including memory.
CO 4	Designing a pipeline for consistent execution of instructions with minimum hazards
CO 5	Manipulating representations of numbers stored in digital computers using I/O devices and store them into memory

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction	No. of hours: 10
Content :		
Introduction to Compute	r Architecture: Definitions and Concepts, I	evels of abstraction, Von Neumann
Architecture.		
Functional Blocks of a Co	mputer: CPU, memory, input-output subsyst	ems, control unit.
Instruction Set Architectu	rre (ISA) of CPU: Registers, instruction exec	cution cycle, RTL (Register Transfer
Language) interpretation of	instructions, addressing modes, instruction se	et.
Types of Instruction Se	et Architectures: Reduced Instruction Set	Computer (RISC) and Complex
Instruction Set Computer (CISC).	
Data Representation: Nu	umber Systems (binary, octal, decimal, he	exadecimal), Arithmetic Operations
(addition, subtraction, mult	iplication, division), Floating Point Represent	ation (IEEE 754 standard).
Unit Number: 2 Title: Memory hierarchy, Storage and No. of hours: 10		
Unit Number: 2	Title: Memory hierarchy, Storage and	No. of hours: 10
Unit Number: 2	Title:Memory hierarchy, Storage andI/O	No. of hours: 10
Unit Number: 2 Content :	Title: Memory hierarchy, Storage and I/O	No. of hours: 10
Unit Number: 2 Content : Memory Hierarchy: Typ	Title: Memory hierarchy, Storage and I/O	No. of hours: 10 nory), ROM (Read-Only Memory),
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn	No. of hours: 10 mory), ROM (Read-Only Memory), namic RAM), Locality of reference:
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor spatial and temporal locality	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn y.	No. of hours: 10 nory), ROM (Read-Only Memory), namic RAM), Locality of reference:
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor spatial and temporal locality Caching: Different index	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn y. ing mechanisms: direct-mapped, set-associ	No. of hours: 10 mory), ROM (Read-Only Memory), namic RAM), Locality of reference: ative, fully associative, Trade-offs
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor spatial and temporal locality Caching: Different index related to block size, associ	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn y. ing mechanisms: direct-mapped, set-associ ativity, and cache size, Processor-cache intera	No. of hours: 10 mory), ROM (Read-Only Memory), namic RAM), Locality of reference: ative, fully associative, Trade-offs actions for read/write requests, Basic
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor spatial and temporal locality Caching: Different index related to block size, associ optimizations: write-throu	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn y. ing mechanisms: direct-mapped, set-associ ativity, and cache size, Processor-cache intera gh vs. write-back caches, Average mem	No. of hours: 10 mory), ROM (Read-Only Memory), namic RAM), Locality of reference: ative, fully associative, Trade-offs actions for read/write requests, Basic ory access time (AMAT), Cache
Unit Number: 2 Content : Memory Hierarchy: Typ Cache, and Secondary Stor spatial and temporal locality Caching: Different index related to block size, associ optimizations: write-throu replacement policies: Least	Title: Memory hierarchy, Storage and I/O es of memory: RAM (Random Access Men rage, SRAM (Static RAM) vs. DRAM (Dyn y. ing mechanisms: direct-mapped, set-associ ativity, and cache size, Processor-cache intera gh vs. write-back caches, Average mem Recently Used (LRU), First-In-First-Out (FII	No. of hours: 10 mory), ROM (Read-Only Memory), namic RAM), Locality of reference: ative, fully associative, Trade-offs actions for read/write requests, Basic ory access time (AMAT), Cache FO).

I/O Data Transfer Techniques: programmed I/O, interrupt-driven I/O, Direct Memory Access (DMA).

Unit Number: 3	Title: The Processor	No. of hours: 10

Content:

Building a Datapath: Introduction, Logic Design Conventions, Building a Datapath: A Simple Implementation scheme, Overview of Pipelining: Pipelined Datapath and Control, Data Hazards: Forwarding versus Stalling, Control Hazards and their mitigation, Handling Exceptions, Parallelism via Instructions.

Clocking Methodology: Revisiting clocking methodology, Amdahl's Law and its implications.

Processor Design: Single cycle processor design, Multi-cycle processor design, Instruction pipelining: stages and performance considerations, Notion of Instruction Level Parallelism (ILP), Data and control hazards: identification and mitigation strategies.

Unit Number: 4	Input/Output Systems and Advanced	No of hours: 10
	Topics	

Content Summary:

I/O Systems: I/O Mapped vs. Memory-Mapped I/O, I/O Data Transfer Techniques: Programmed I/O, Interrupt-Driven I/O, Direct Memory Access (DMA)

Advanced Memory Concepts: Memory Interleaving: Concepts and Benefits, Processor-Cache Interactions: Handling Read/Write Requests, Basic Cache Optimizations: Write-Through vs. Write-Back Caches

Storage Technologies: Introduction to Magnetic Disks: Tracks, Sectors, Disk Scheduling Algorithms, Flash Memory Technology: Structure and Performance Characteristics

Cache Memory: Different Indexing Mechanisms: Direct-Mapped, Set-Associative, Fully Associative Caches, Trade-offs related to Block Size, Associativity, and Cache Size, Processor-Cache Interactions for Read/Write Requests, Basic Optimizations: Write-Through vs. Write-Back Caches, Average Memory Access Time (AMAT), Cache Replacement Policies: Least Recently Used (LRU), First-In-First-Out (FIFO).

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key concepts in computer organization using PPTs and diagrams.
- 2. **Conceptual Understanding**: Cover topics like CPU architecture, memory hierarchy, and I/O systems.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on assembly language and instruction set architecture.

- 4. Case Studies: Analyze real-world computer architectures and their performance metrics.
- 5. Group Work: Collaborate on projects that involve designing and simulating computer systems.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of organizational concepts.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign projects that require application of concepts in computer organization and architecture.
- 2. Lab Projects: Facilitate hands-on tasks involving hardware simulations and assembly programming.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on architecture topics.
- 4. **Online Forums**: Create platforms for discussing challenges and sharing solutions related to computer architecture.
- 5. Self-Study for Case Studies: Encourage independent research on current trends in computer organization.
- 6. **Collaborative Projects**: Organize group projects focused on building and optimizing computer architectures.

Text Books:

- 1. David A. Patterson and John L. Hennessy ,"Computer Organization and Design: The Hardware/Software Interface",5th Edition, Elsevier
- 2. Mano M. Morris, "Computer System Architecture", Pearson.

Reference Books:

- 1. CarlHamache, "Computer Organization and Embedded Systems", 6th Edition, McGraw Hill Higher Education
- 2. "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill
- 3. William Stallings "Computer Organization and Architecture: Designing for Performance", 10th Edition, Pearson Education

Additional Readings:

Online Learning References

- a) MIT OpenCourseWare Computer System Engineering
 - a. Link: MIT OCW

b. **Description:** This course provides a deep dive into computer system architecture, exploring processor design, memory systems, and parallel processing.

b) GeeksforGeeks - Computer Organization and Architecture

- a. Link: <u>GeeksforGeeks</u>
- b. **Description:** GeeksforGeeks provides detailed tutorials on various topics in computer organization and architecture, such as instruction sets, pipelining, and memory hierarchy.

c) NPTEL - Computer Architecture

- a. Link: <u>NPTEL</u>
- b. **Description:** This course from NPTEL covers the principles of computer architecture, including instruction sets, CPU design, and memory systems, with a focus on practical applications.

COMPUTER NETWORKS

	B. Tech CSE with specialization in Cybersecurity			
Program Name:				
Course Name: Computer Networks	Course Code	L-T-P	Credits	Contact Hours
	ENCS304	3-1-0	4	40
Type of Course:	Major-25			·
Pre-requisite(s), if any: Basics of Communication Engineering and Data structures				

Course Perspective: The course provides a comprehensive introduction to the fundamental concepts and principles of computer networking. Students will gain an in-depth understanding of how data communication works, the different types of network topologies, and the protocols that govern data exchange over networks. The course covers key aspects such as network hardware and software components, network administration, and protocol selection for various communication services. By exploring topics such as the OSI model, error detection and correction, IP addressing, routing protocols, and network applications, students will develop the skills necessary to design, implement, and manage computer networks effectively. The course is divided into 4 modules:

Evolution of Computer Networking

- a) Data Link Layer Design
- b) Introduction to Network Layer and Transport Services
- c) Application Layer

Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the fundamental concepts and principles of computer networks.
CO 2	Applying knowledge of network hardware and software components.
CO 3	Developing skills in network administration and management.
CO 4	Identifying appropriate protocol for desired communication service.
$\frac{0}{0} - 0$	Sourse outcomes. A student is expected to have learnt concents and demonstrated/developed

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Evolution of Computer Networking	No. of hours: 10	
Content Summary:			
Data communication Co	mponents: Representation of data and its flow	v Networks, Various Connection	
Topology, Protocols and S	Standards, OSI model, Access networks, physical n	nedia, Forwarding, routing; packet	
switching; circuit switchin	ng; a network of network, packet delay and loss, en	d to end throughput.	
Unit Number: 2	Title: Data Link Layer	No. of hours: 10	
Content Summary:			
Data Link Layer and Med	ium Access Sub Layer: Error Detection and Error	Correction - Fundamentals, Block	
coding, Hamming Distant	ce, CRC; Flow Control and Error control protoco	ols - Stop and Wait, Go back - N	
ARQ, Selective Repeat A	RQ, Sliding Window, Piggybacking, Random Ad	ccess, Multiple access protocols -	
Pure ALOHA, Slotted AL	OHA, CSMA/CD,CDMA/CA.		
Title: Introduction to Network Layer and		No of hourse 10	
Onit Number . 5	Transport Services	No. of hours. To	
Content Summary:			
Network Layer: Switching, Logical addressing - IPV4, IPV6; Address mapping - ARP, RARP, BOOTP and			
DHCP-Delivery, Forwar	rding and Unicast Routing protocols. Transp	ort Layer: Process to Process	
Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion			
Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.			
Unit Number: 4	Title: Application Layer	No. of hours: 10	
Content Summary:			
Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP),			
WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.			

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures**: Introduce key concepts in computer networks using PPTs and network diagrams.
- 2. **Conceptual Understanding**: Cover topics like network protocols, topologies, and architecture models (OSI, TCP/IP).
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on troubleshooting network issues and configuring devices.
- 4. Case Studies: Analyze real-world network designs and their performance implications.

- 5. Group Work: Collaborate on projects that involve designing and simulating network setups.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of networking concepts.

Outside Classroom Learning Experience

- 1. Theory Assignments: Assign projects that require practical application of networking principles.
- 2. Lab Projects: Facilitate hands-on tasks involving network configuration and management tools.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on networking topics.
- 4. **Online Forums**: Create platforms for discussing networking challenges and sharing solutions.
- 5. Self-Study for Case Studies: Encourage independent research on current trends and technologies in computer networking.
- 6. **Collaborative Projects**: Organize group projects focused on developing efficient network solutions for real-world scenarios.

Textbooks:

T1: " Data Communication and Networking", 5th Edition, Behrouz A. Forouzan, McGraw-Hill, 2012.

T2: "Computer Networks", Andrew S. Tanenbaum and David J. Wetherall, Pearson, 5th Edition, 2010.

T3: "Data and Computer Communication", 8th Edition, William Stallings, Pearson Prentice Hall Indi

Reference Books

R1: "Computer Networking A Top-Down Approach". 5th Edition, James F. Kurose-Keith W. Ross (Pearson).

R3. "Computer Networks – Protocols, Standards and Interfaces". 2nd Edition –Uyless Black (Prentice Hall of India Pvt. Ltd.

Additional Readings:

Online Learning References

- I) MIT OpenCourseWare Computer Networks
 - a. Link: MIT OCW
 - b. **Description:** This course provides a thorough exploration of computer networks, focusing on network design, protocol layers, and network management.

II) GeeksforGeeks - Computer Networks

a. Link: <u>GeeksforGeeks</u>

b. **Description:** GeeksforGeeks provides detailed tutorials on various aspects of computer networks, such as the OSI model, data link layer, network layer, and transport layer protocols.

III) NPTEL - Computer Networks

- a. Link: <u>NPTEL</u>
- b. **Description:** This course from NPTEL provides a comprehensive overview of computer networking, including topics like error detection, IP addressing, and routing protocols.

COMPUTER NETWORKS LAB

Program Name:	B. Tech (Computer Science and Engineering)				
Course Name:	Course Code	L-T-P	Credits		
Computer Networks Lab	ENCS352	0-0-2	1		
Type of Course:	Major-26	·			
Pre-requisite(s), if any: Basics of Networking					

Defined Course Outcomes

COs	Statements						
CO 1	Applying fundamental networking concepts and techniques to develop and analyze network topologies, protocols, and error detection mechanisms.						
CO 2	Designing and implement network protocols and architectures for efficient data communication and management in various environments.						
CO 3	Utilizing advanced networking techniques to implement, monitor, and optimize communication systems for real-time and multimedia applications.						
CO 4	Integrating IoT devices and develop smart systems using networking principles for automation and efficient data management.						

Lab Experiments

Ex.	Experiment Title	Mapped
No		CO/COs
1	Design and simulate a simple computer network using various connection topologies (bus, star, ring, mesh). Compare the advantages and disadvantages of each topology in terms of data flow and network efficiency.	CO 1
2	Create a network simulation to demonstrate packet switching and circuit switching. Compare the performance and efficiency of both methods by simulating a series of data transmission scenarios.	CO 1
3	Develop a network simulator to analyze packet delay, loss, and end-to-end throughput. Implement various routing algorithms and measure their impact on network performance under different traffic conditions.	CO1
4	Implement error detection and correction mechanisms using block coding and CRC. Simulate a communication system that demonstrates how errors are detected and corrected during data transmission.	CO2
5	Design and simulate flow control and error control protocols such as Stop and Wait, Go-Back-N ARQ, and Selective Repeat ARQ. Compare their performance in terms of throughput and efficiency under varying network conditions.	CO2

6	Develop a simulation to demonstrate multiple access protocols such as Pure ALOHA, Slotted ALOHA, CSMA/CD, and CSMA/CA. Analyze the performance of each protocol in handling network collisions and maximizing data transmission efficiency	CO2
7	Implement a sliding window protocol with piggybacking for efficient data transmission and error control. Simulate data transfer between two nodes and visualize the window movements and acknowledgments.	CO2
8	Create a simulation to demonstrate logical addressing using IPv4 and IPv6. Implement address mapping techniques such as ARP, RARP, BOOTP, and DHCP to show how devices acquire and resolve network addresses.	CO3
9	Implement a transport layer simulation to demonstrate process-to-process communication using UDP, TCP, and SCTP. Compare the protocols in terms of connection establishment, data transmission, and congestion control.	CO3
10	Implement a DNS and DDNS simulation to demonstrate domain name resolution and dynamic updates. Create a simple client-server application that queries and updates the DNS records.	CO4
11	Create a web server simulation to demonstrate the workings of HTTP and <u>WWW</u> . Implement basic HTTP request and response handling, and simulate a simple web browsing session.	CO4

INTRODUCTION TO ETHICAL HACKING

Programme Name:	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits	Contact Hours	
Introduction to Ethical Hacking	ENSP312	4-0-0	4	40	
Type of Course:	Department Elective -2				
Pre-requisite(s), if any: Computer networks and Security Fundamentals					

Course Perspective: The Certified Ethical Hacker (CEH) program is the gold standard of information security training programs. EC-Council's flagship certification allows you to master hacking technologies. You will need to understand hacking and become a hacker, but an ethical one! The accredited course provides the advanced hacking tools and techniques used by hackers and information security professionals alike to break into organizations. As we say, "To beat a hacker, you need to think like a hacker". This course will immerse you into the hacker mindset so you will be able to understand attacks and exploits to defend against future attacks. The security mindset in any organization must not be limited to the silos of a certain vendor, technologies, or pieces of equipment. This ethical hacking course puts you in the driver's seat of a hands-on environment with a systematic process. Here, you will be exposed to an entirely different way of achieving optimal information security posture in your prospective organization, by hacking it! You will scan, test, hack and secure your own systems while uncovering the ways to approach your target and succeed at breaking in every time! After taking this course, you will fully understand the five phases of ethical hacking: Reconnaissance, Gaining Access, Enumeration, Maintaining Access, and covering your tracks.. The course is divided into 4 modules:

- a) Introduction to Ethical Hacking, Foot printing and Reconnaissance, Scanning Networks and Enumeration
- b) Vulnerability Analysis, System Hacking, Malware Threats, and Sniffing
- c) Social Engineering, Denial of Service, Session Hijacking, Evading IDS, Firewalls and Honeypots
- d) Hacking Webservers, Hacking Web Applications, SQL Injection and Hacking Wireless Networks, Mobile Platforms, and IoT Devices

CO1	Understanding the ethical and legal requirements of security assessment and penetration
	testing and determine a strategy to comply with these requirements.
CO2	Analyzing different phases of hacking and recommend astrategy to use ethical hacking for
	assessing the security of various components of an information system.
CO3	Comparing different hacking techniques and analyze the legal implications of hacking.
	Examining different vulnerabilities, threats, and attacks to information systems and
CO4	recommend the countermeasures.
	Designing cryptography algorithms and encryption techniques and the implementation
CO5	strategies for securing information.

Course Outcomes (COs). On completion of the course the participants will be:

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Title: Introduction to Ethical Hacking, Foot printing						
Unit Number:1andReconnaissance,ScanningNetworksandEnumeration					and	No. of hours:10

Content: Information Security Overview, Hacking Methodologies and Frameworks, Hacking Concepts, Ethical Hacking Concepts, Information Security Controls, Information Security Laws and Standards, Footprinting Concepts, Footprinting through Search Engines, Footprinting through Web Services, Footprinting through Social Networking Sites, Website Footprinting, Email Footprinting, Whois Footprinting, DNS Footprinting, Network Footprinting, Footprinting through Social Engineering, Footprinting Tools, Footprinting Countermeasures, Network Scanning Concepts, Scanning Tools, Host Discovery, Port and Service Discovery, OS Discovery (Banner Grabbing/OS Fingerprinting), Scanning Beyond IDS and Firewall, Network Scanning Countermeasures, Enumeration Concepts, NetBIOS Enumeration, SNMP Enumeration, LDAP Enumeration, NTP and NFS Enumeration, SMTP and DNS Enumeration, Other Enumeration Techniques, Enumeration Countermeasures.

Unit Number:2	Title:	Vulnerability	Analysis,	System	Hacking,	
	Malwa	re Threats,and S	Sniffing			

No. of hours:10

Content: Vulnerability Assessment Concepts, Vulnerability Classification and Assessment Types, Vulnerability Assessment Tools, Vulnerability Assessment Reports, Gaining Access, Escalating Privileges, Maintaining Access, Clearing Logs, Malware Concepts, APT Concepts, Trojan Concepts, Virus and Worm Concepts, Fileless Malware Concepts, Malware Analysis, Malware Countermeasures, Anti-Malware Software, Sniffing Concepts, Sniffing Technique: MAC Attacks, Sniffing Technique: DHCP Attacks, Sniffing Technique: ARP Poisoning, Sniffing Technique: Spoofing Attacks, Sniffing Technique: DNS Poisoning, Sniffing Tools, Sniffing Countermeasures.

Unit Number:3Title: Social Engineering, Denial of Service, SessionHijacking, EvadingIDS, Firewalls and HoneypotsNo. of hours:10

Content: Social Engineering Concepts, Social EngineeringTechniques, Insider Threats, Impersonation on Social Networking Sites, Identity Theft, Social Engineering Countermeasures, DoS/DDoS Concepts, Botnets, DoS/DDoS Attack Techniques, DDoS Case Study, DoS/DDoS Attack Countermeasures, Session Hijacking Concepts, Application-Level Session Hijacking, Network-Level Session Hijacking, Session Hijacking Tools, Session Hijacking Countermeasures, IDS, IPS, Firewall and Honeypot Concepts, IDS, IPS, Firewall and Honeypot Solutions, Evading IDS, Evading Firewalls, Evading NAC and Endpoint Security, IDS/Firewall Evading Tools, Detecting Honeypots, IDS/Firewall Evasion Countermeasures.

Unit Number:4	Title:	Hacking	Webservers,	Hacking	Web	
	Applicat	tions, SQL	Injection and	Hacking W	ireless	No. of hours:10
	Network	ks, Mobile P	latforms, and Io	T Devices		

Content: Web Server Concepts, Web Server Attacks, Web Server Attack Methodology, Web Server Attack Countermeasures, Patch Management, Web Application Concepts, Web Application Threats, Web Application Hacking Methodology, Web API, Webhooks, and Web Shell, Web Application Security, SQL Injection Concepts, Types of SQL Injection, SQL Injection Methodology, SQL Injection Tools, Evasion Techniques, SQL Injection Countermeasures, Wireless Concepts, Wireless Encryption, Wireless Threats, Wireless Hacking Methodology, Wireless Hacking Tools, Bluetooth Hacking, Wireless Attack Countermeasures, Wireless Security Tools.

Learning Experiences

Classroom Learning Experience

- 1. Interactive Lectures: Introduce key concepts of ethical hacking using PPTs and case studies.
- 2. **Conceptual Understanding**: Cover topics like penetration testing, vulnerability assessment, and ethical hacking frameworks.
- 3. **Problem-Solving Sessions**: Conduct in-class exercises focused on identifying and exploiting vulnerabilities.
- 4. Case Studies: Analyze real-world hacking incidents and their ethical implications.
- 5. **Group Work**: Collaborate on projects that involve developing security assessments and penetration testing plans.
- 6. **Continuous Feedback**: Implement quizzes and peer reviews to assess understanding of ethical hacking principles.

Outside Classroom Learning Experience

- 1. **Theory Assignments**: Assign projects that require application of ethical hacking techniques in simulated environments.
- 2. Lab Projects: Facilitate hands-on tasks using tools for penetration testing and network scanning.
- 3. **Question Bank**: Provide practice problems and resources for self-assessment on ethical hacking topics.
- 4. **Online Forums**: Create platforms for discussing hacking challenges and sharing best practices.

- 5. **Self-Study for Case Studies**: Encourage independent research on recent ethical hacking trends and methodologies.
- 6. **Collaborative Projects**: Organize group projects focused on developing secure applications and systems.

Text Books:

T1 : https://www.eccouncil.org/academia/network-defense-essentials- nde/

T2: William Stallings, Lawrie Brown, Computer Security: Principles and Practice, 3rd edition,2014.

Reference Books:

R1: Cryptography and Network security, Behrouz A. Forouzan , Debdeep Mukhopadhyay, Mcgraw Hill Education, 2 nd Edition, 2011

R2: Machine Intelligence and Big Data Analytics for Cybersecurity Applications. Studies in Computational Intelligence, vol 919. Springer, Cham, 2021

R3: Cryptography and Network Security - Principles and Practice | Seventh Edition | By Pearson by Stallings William Link: <u>Amazon</u>

Self-Learning Components:

Unit 1: Network Security Fundamentals, Identification, Authentication, and Authorization

Self-Learning Component: Create a virtual lab to simulate network security protocols. This task involves setting up a small network using virtual machines and implementing basic security measures like firewalls and access controls. Resources for virtual lab tools like GNS3 or Packet Tracer can be leveraged for hands-on practice.

Unit 2: Network Security Controls - Administrative Controls, Physical Controls, and Technical Controls

Self-Learning Component: Develop a comprehensive security policy for a hypothetical organization. This project includes researching various security frameworks, creating policies tailored to different aspects of security (such as physical, administrative, and technical), and proposing training programs for staff awareness.

Unit 3: Virtualization and Cloud Computing

Self-Learning Component: Explore different cloud service models (IaaS, PaaS, SaaS) and deploy a simple application in a cloud environment. This could involve using free tiers of popular cloud services like AWS, Google Cloud, or Azure to understand the deployment process, security settings, and management of cloud resources.

Unit 4: Wireless Network Security, Mobile Device Security, and IoT Device Security

Self-Learning Component: Conduct a security audit for a wireless network. This could include identifying potential vulnerabilities in a home or small office network, implementing improved encryption settings, and recommending security enhancements for mobile and IoT devices connected to the network.

Unit 5: Cryptography and PKI, Data Security and Network Traffic Monitoring

Self-Learning Component: Implement a small-scale PKI setup and simulate data encryption and network traffic monitoring. This would involve generating your own digital certificates, securing communications between two parties, and using tools like Wireshark to monitor and analyze network traffic for security threats.

Open-Source Society University (OSSU)

OSSU Computer Science

OSSU provides an open-source curriculum for learning computer science. While it covers
a broad range of topics in computer science, it includes resources for learning about
encryption principles, threats to communication networks, and the implementation of
security measures in networks. Link: OSSU Computer Science

INTRODUCTION TO ETHICAL HACKING LAB

Programme Name:	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits		
Introduction to Ethical Hacking Lab	ENSP362	0-0-2	2		
Type of Course:	Department Elective -4				
Pre-requisite(s), if any: Networking Concepts					

Defined Course Outcomes

COs	Statements
CO1	Identifying and Utilize Foot printing Techniques: Equip students with the ability to identify
	and utilize various footprinting techniques through search engines, social networking sites, and
	specialized tools.
CO2	Analyzing Network Scanning Methodologies: Develop students' capabilities to analyze and
	apply different network scanning methodologies to detect network vulnerabilities.
CO3	Evaluating Network Enumeration Strategies: Train students to evaluate and execute effective
	enumeration strategies across network services like SNMP, RPC, SMB, and FTP.
CO4	Assessing and Navigate through Network Security: Teach students to assess and navigate
	through security measures such as IDS and firewalls using advanced scanning techniques.
CO5	Applying Vulnerability Assessment Tools: Enable students to research and apply vulnerability
	assessment tools and databases to assess risks and inform security measures.

LAB EXPERIMENTS

Ex.	Experiment Title	Mapped CO/COs
No		
1	Perform Footprinting Through Search Engines	CO2
2	Perform Footprinting Through Social Networking Sites	CO2
3	Perform Footprinting using Various Footprinting Tools	CO2
4	Scan beyond IDS and Firewall	CO1
5	Perform Network Scanning using Various Scanning Tools	CO2
6	Perform SNMP Enumeration	CO2
7	Perform RPC, SMB, and FTP Enumeration	CO2
8	Perform Enumeration using Various Enumeration Tools	CO3
	Perform Vulnerability Research with Vulnerability Scoring Systems and	CO3
9	Databases	
10	Gain Access to the System	CO1
11	Perform Privilege Escalation to Gain Higher Privileges	CO2
12	Gain Access to the Target System using Trojans	CO2
13	Perform Dynamic Malware Analysis	CO3
14	Perform Network Sniffing using Various Sniffing Tools	CO3
15	Perform Social Engineering using Various Techniques	CO3
16	Detect and Protect Against DoS and DDoS Attacks	CO2
17	Perform Session Hijacking	CO2
18	Evade Firewalls using Various Evasion Techniques	CO1
19	Perform a Web Server Attack	CO2
20	Perform Web Application Attacks	CO2
	Detect Web Application Vulnerabilities using Various Web Application Security	CO4
21	Tools	
22	Detect SQL Injection Vulnerabilities using Various SQLInjection Detection Tools	CO2
23	Perform Wireless Traffic Analysis	CO2
24	Perform Wireless Attacks	CO2

25	Hack Android Devices	CO1
26	Secure Android Devices using Various Android SecurityTools	CO2
27	Perform Footprinting using Various Footprinting Techniques	CO2
28	Capture and Analyze IoT Device Traffic	CO2
29	Perform S3 Bucket Enumeration using Various S3 BucketEnumeration Tools	CO2
30	Encrypt the Information using Various Cryptography Tools	CO2

Textbooks and Reading Materials

1. Footprinting through Search Engines:

"Open Source Intelligence Techniques" by Michael Bazzell: A comprehensive guide to collecting data through online sources, enhancing skills in cyber reconnaissance.

2. Footprinting through Social Networking Sites:

"Social Engineering: The Science of Human Hacking" by Christopher Hadnagy: Offers insights into the techniques used for gathering information via social media and other human-centric avenues.

3. Footprinting using Various Footprinting Tools:

"Hacking: The Art of Exploitation" by Jon Erickson: Provides a deep dive into the tools and techniques hackers use for footprinting, including practical applications.

4. Scan Beyond IDS and Firewall:

"Network Security Essentials" by William Stallings: Covers various network security protocols and methods, including techniques to penetrate network defenses like IDS and firewalls.

5. Perform Network Scanning using Various Scanning Tools:

"Nmap Network Scanning" by Gordon Lyon: This book is the official guide to the Nmap Security Scanner, a tool for network exploration and security auditing.

Software and Development Tools

- 1. **Nmap:** A versatile network scanning tool used for network discovery and security auditing, capable of identifying devices and services on a network.
- 2. **Wireshark:** A network protocol analyzer that allows users to capture and interactively browse the traffic running on a computer network.
- 3. **Maltego:** An interactive data mining tool that renders directed graphs for link analysis, primarily used for online investigations and footprinting.
- **4. Nessus:** A comprehensive vulnerability scanner that identifies security vulnerabilities, misconfigurations, and potential risks within network environments.

5. **Metasploit:** An advanced framework for developing, testing, and executing exploit code against a remote target machine, often used in penetration testing.

Online Platforms and Communities

- **1. Hack The Box:** Engage with Hack The Box, an online platform that offers hands-on cybersecurity training through real-world simulation environments, ideal for practicing footprinting and network scanning.
- 2. **Cybrary:** Utilize Cybrary for its comprehensive range of courses and community discussions on topics such as vulnerability research and network enumeration, enhancing both foundational and advanced knowledge.
- 3. **OWASP (Open Web Application Security Project):** Join the OWASP community to access resources and collaborate on web security projects, which can help in understanding vulnerability assessment and footprinting techniques.
- 4. **Shodan:** Leverage Shodan, a search engine for internet-connected devices, to practice footprinting techniques and understand the landscape of network vulnerabilities from a real-world perspective.
- 5. **NetSec Focus Slack Channel:** Participate in the NetSec Focus Slack channel, a community for networking and security professionals, providing a platform for discussions, mentorship, and sharing of latest tools and methodologies in network scanning and enumeration.

Virtual Labs and Additional Resources

- 1. **Hack The Box Virtual Lab:** Engage with Hack The Box for practical exercises in footprinting and network scanning, allowing students to test their skills in a safe, controlled environment designed to simulate real-world cybersecurity scenarios.
- 2. Shodan Educational Toolkit: Utilize Shodan, the search engine for internet-connected devices, to perform footprinting and gather data about network vulnerabilities, providing a practical resource for students to understand the breadth of accessible online devices.
- **3. GNS3 Network Simulator:** Use GNS3 for hands-on practice in configuring virtual networks that can be used to practice scanning, enumeration, and bypassing simulated network defenses like IDS and firewalls.
- 4. National Vulnerability Database (NVD): Provide students access to the National Vulnerability Database to research and understand various vulnerabilities, their impacts, and the scoring systems used to evaluate them.

5. OpenVAS Virtual Lab: Integrate OpenVAS, a full-featured vulnerability scanner, into the course's virtual lab resources to give students practical experience in performing vulnerability assessments and interpreting the results in a controlled environment.

INTRODUCTION TO LINUX WITH BASH

SCRIPTING LAB

Programme Name:	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits		
Introduction to Linux with Bash Scripting Lab	ENSP356	0-0-4	2		
Type of Course:	Major-27				
Pre-requisite(s), if any: Basics of Operating System and Unix					

Defined Course Outcomes

COs	Statements
CO1	Understanding commands related to process control and apply them to manage processes.
CO2	Applying the concepts of control structure, loops, case and functions in shell programming and apply them to create shell scripts.
CO3	Associating the concepts of arrays with Linux and apply them to create, compile and execute C programs in Linux terminal.

CO4	Comparing different editors (vi, gedit, nano) and use them to create shell script and C program
	for given problem

Lab Task	MAPPED
	CO/COS
Develop a bash script to automate the backup of critical system files and user data to a	CO1
remote server.	
Create a script to monitor system performance and resource usage, sending alerts	CO1
when thresholds are exceeded.	
Develop a script to automate the creation, deletion, and management of user accounts	CO2
on a Linux system.	
Create a script to automate the installation and configuration of a LAMP (Linux,	CO2
Apache, MySQL, PHP) stack.	
Develop a script to automate network configuration and provide diagnostic	CO3
information for troubleshooting network issues.	
Create a script to automate the setup and management of Git repositories for version	CO3
control in a development environment.	

LAB EXPERIMENTS

MINOR PROJECT-III

Program Name:	B. Tech CSE with specialization in Cybersecurity		
Course Name: Minor	Course Code	L-T-P Credits	
Project-III	ENSI352		2
Type of Course:	Project-III		
Pre-requisite(s), if any: NA			

Duration:

The minor project will last for three months.

Project Requirements:

1. Problem Identification and Analysis:

- Identify a relevant problem in society or industry.
- Conduct a thorough analysis of the problem, considering various perspectives and implications.

2. Implementation:

• Develop and implement a solution to address the identified problem.

3. Data Visualization:

• Utilize appropriate data visualization techniques to represent the problem, solution, and outcomes effectively.

4. Presentation of Solutions:

 Prepare a comprehensive presentation of the implemented solution, including its development process, outcomes, and impact.

5. Case Studies:

 Conduct case studies related to the problem and solution, analyzing existing examples and drawing relevant insights.

Guidelines:

1. Project Selection:

- Choose a societal or industrial problem relevant to the field of computer science and engineering.
- Ensure the problem is specific and well-defined.

2. Literature Review:

- Conduct a thorough review of existing literature and solutions related to the problem.
- \circ Identify gaps in existing solutions and potential areas for further investigation.

3. Implementation:

- Develop a detailed plan for implementing the solution.
- Execute the implementation using appropriate tools, technologies, and methodologies.

4. Data Visualization:

- Collect relevant data and use visualization techniques to represent the problem, solution, and outcomes.
- Ensure the visualizations are clear, accurate, and effectively communicate the information.

5. Documentation:

- Document the entire process, including problem identification, literature review, implementation, data visualization, and case studies.
- Use appropriate formats and standards for documentation.

6. Presentation:

- Prepare a presentation summarizing the problem, existing solutions, implementation process, data visualization, and case studies.
- Ensure the presentation is clear, concise, and well-structured.

Evaluation Criteria for Minor Project (Out of 100 Marks):

1. Problem Identification and Analysis (15 Marks):

- Comprehensive identification and analysis of the problem: 15 marks
- o Good identification and analysis of the problem: 12 marks
- Basic identification and analysis of the problem: 9 marks
- Poor identification and analysis of the problem: 5 marks
- No identification and analysis of the problem: 0 marks

2. Implementation (30 Marks):

- Successful and thorough implementation: 30 marks
- Good implementation: 25 marks
- Moderate implementation: 20 marks
- Basic implementation: 15 marks

- Poor implementation: 10 marks
- No implementation: 0 marks

3. Data Visualization (20 Marks):

- Effective and clear data visualization: 20 marks
- Good data visualization: 15 marks
- Moderate data visualization: 10 marks
- Basic data visualization: 5 marks
- Poor data visualization: 0 marks

4. Presentation of Solutions (15 Marks):

- Clear, concise, and engaging presentation: 15 marks
- Clear but less engaging presentation: 12 marks
- Somewhat clear and engaging presentation: 9 marks
- Unclear and disengaging presentation: 5 marks
- No presentation: 0 marks

5. Case Studies (20 Marks):

- o Comprehensive and insightful case studies: 20 marks
- Good case studies: 15 marks
- Moderate case studies: 10 marks
- Basic case studies: 5 marks
- Poor case studies: 0 marks

Total: 100 Marks

Course Outcomes:

By the end of this course, students will be able to:

1. Identify and Analyze Problems:

• Identify relevant societal or industrial problems and conduct a thorough analysis of these problems.

2. Implement Solutions:

• Develop and implement effective solutions to address identified problems using appropriate tools and technologies.

3. Visualize Data:

• Utilize data visualization techniques to represent problems, solutions, and outcomes clearly and effectively.

4. **Present Solutions:**

• Prepare and deliver comprehensive presentations summarizing the implementation process, outcomes, and impact of their solutions.

5. Conduct Case Studies:

• Conduct case studies related to the problem and solution, analyzing existing examples and drawing relevant insights.

6. Literature Review:

• Conduct comprehensive literature reviews to identify gaps in existing solutions and potential areas for further investigation.

7. Documentation:

 Document the entire process, including problem identification, literature review, implementation, data visualization, and case studies, using appropriate formats and standards.

8. Professional Development:

• Develop skills in research, analysis, implementation, data visualization, documentation, and presentation, contributing to overall professional growth.

COMPETITIVE CODING -IV

Drogrom Nomer	B. Tech CSE wit	th specializ	vation in
rrogram Name:	Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
COMPETITIVE CODING -IV		2-0-0	0
Type of Course:	AUDIT-4		

Contact Hours	30
Version	

Course Outcomes

CO1	Understanding system design principles and identify functional and non-functional
	requirements for projects.
CO2	Applying scaling and load balancing techniques and evaluate caching strategies for system
	optimization.
CO3	Designing efficient database schemas and implement ACID transactions in SQL and NoSQL.
CO4	Solving algorithmic problems using advanced techniques and apply string matching algorithms
	in coding challenges.

Unit Number: 1		Title: Foundations and Advanced Concepts in System	No. of hours: 8		
		Design			
Co	ontent:				
In	troduction to Syster	n Design			
•	Principles of Syst	em Design: Basics of system design: modularity, scalability	, and maintainability,		
	Hands-on: Design	a simple e-commerce or social media system blueprint.			
•	Functional vs. N	on-Functional Requirements: Understand key differences	, Hands-on: Identify		
	functional and non-	functional requirements for a simple project.			
Sc	alability and Load	Balancing			
•	• Scaling Techniques: Vertical Scaling: Adding resources to a single server, Horizontal Scaling:				
	Distributing load across multiple servers, Hands-on: Set up vertical and horizontal scaling scenarios				
	using cloud tools.				
•	• Load Balancing: Round-robin, least connections, and IP hashing strategies,				
Ca	Caching Strategies:				
•	Client-Side vs. Server-Side Caching: Comparison of caching techniques.				
• Eviction Policies: LRU and LFU policies for cache eviction.					
Unit Number: 2 Title: Advanced Database concepts		No. of hours: 8			

Content:

Database Indexing: different types of indexes (e.g., B-tree, hash, bitmap), how indexes improve query performance, create indexes and their impact on write operations.

Database Transactions: ACID properties (Atomicity, Consistency, Isolation, Durability), implementing transactions in both SQL and NoSQL databases, scenarios like rollbacks and savepoints.

Database Sharding: partitioning techniques, sharding, sharding strategies for scalability.

Data Modeling: entity-relationship diagrams (ERDs), Normalize data models based on business requirements, Design efficient schemas for different use cases.

Unit Number: 3	No. of hours: 8			
Content:				
Bit Manipulation: X(OR operations, Bitwise AND, OR, NOT, Counting set bits	s, Power of two, Bit		
masking				
Divide and Conquer:	Matrix exponentiation, Strassen's algorithm for matrix multi	plication, Closest pair		
of points				
Two Pointers: Fast and	d slow pointer, Merging sorted arrays, Triplets, pairs with give	n sum		
Sliding Window : Max	kimum in a sliding window, Smallest subarray with sum greate	r than a given value		
Union-Find (Disjoint S	Set Union - DSU) : Union by rank, Path compression			
String Matching: KM	P algorithm, Rabin-Karp, Z-algorithm			
Unit Number: 4	Title: Miscellaneous	No. of hours: 6		
Content:				
Hashing: Hash tables, Hash maps and sets, Collision handling, Anagram checks				
Simulation and Design Problems: LRU cache design, Parking lot simulation, Elevator design, Rate				
limiter				
Concurrency: Multithreading problems, Deadlock detection				
Graphical Algorithms: Flood fill, Convex hull, Image rendering algorithms				

Lab Experiments

S. No	Problem Statement	
110.		
1	Design a simple e-commerce system with modularity, scalability, and maintainability.	
2	Identify functional and non-functional requirements for a social media platform.	CO1
3	Implement vertical scaling on a single server and measure performance.	CO2
4	Set up horizontal scaling across multiple servers using a cloud platform.	CO2
5	Implement a round-robin load balancer for distributing requests across multiple servers.	CO2
6	Compare client-side and server-side caching strategies for a web application.	CO2
7	Implement Least Recently Used (LRU) cache eviction policy.	CO2
8	Create a B-tree index for a database to optimize search queries.	CO3
9	Implement ACID-compliant transactions in an SQL database.	CO3
10	Implement database sharding for scalability in a NoSQL database.	CO3
11	Normalize a database schema to 3NF based on given business requirements.	CO3
12	Use bitwise operations to check if a number is a power of two.	CO4
13	Implement matrix multiplication using Strassen's algorithm.	CO4
14	Find the closest pair of points in a set using divide and conquer.	CO4
15	Merge two sorted arrays using the two-pointer technique.	CO4
16	Find the maximum element in a sliding window of size k.	CO4
17	Solve the union-find problem using path compression and union by rank.	CO4
18	Implement the KMP string matching algorithm to find a pattern in a text.	CO4
19	Implement Rabin-Karp algorithm for string matching in a large document.	CO4
20	Design a hash table with collision handling using chaining.	CO4
21	Implement an anagram checker using hash maps.	CO4
22	Simulate an LRU cache system design.	CO2, CO4
23	Design a rate limiter using a sliding window algorithm.	CO4
24	Implement deadlock detection using multithreading.	CO4
25	Solve the flood fill problem using depth-first search (DFS).	CO4

S. No.	Problem Statement	Mapped CO
26	Implement the convex hull algorithm for a set of 2D points.	CO4
27	Design a simple elevator simulation system with multithreading.	CO4
28	Implement a parking lot simulation with object-oriented design principles.	CO2, CO4
29	Design a system to detect and recover from transaction rollbacks in a database.	CO3
30	Optimize an e-commerce website with horizontal scaling and caching strategies.	CO2

Learning Experiences

Classroom Learning Experience

- 1. Engagement through Lecture PPTs: Utilize well-structured presentations to convey key concepts of system design, database indexing, and algorithmic techniques.
- 2. Problem-Based Theory Assignments: Assign real-world challenges like load balancing and caching strategies to enhance problem-solving skills.
- 3. Project-Based Lab Work: Facilitate hands-on lab assignments where students design and implement system blueprints and databases collaboratively.
- 4. Comprehensive Question Bank: Provide a diverse question bank covering the syllabus to allow systematic practice for exams and coding interviews.
- 5. Model Question Papers and Assessments: Conduct continuous assessments through quizzes and coding challenges to test understanding of complex concepts.
- 6. Support & Feedback System: Offer timely feedback on assignments and projects, with access to instructors for additional support and clarification.

Outside Classroom Learning Experience

- 1. Use of ICT Tools & Interactive Boards: Host course materials on Moodle LMS for anytime access, utilizing interactive boards for live demonstrations.
- 2. Video Lectures for Critical Topics: Provide pre-recorded lectures on advanced topics like ACID transactions and multithreading for flexible learning and review.

Text Books:

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). *Introduction to Algorithms* (3rd ed.). MIT Press. ISBN: 978-0262033848.

- McDowell, G. L. (2015). Cracking the Coding Interview: 189 Programming Questions and Solutions (6th ed.). CareerCup. ISBN: 978-0984782857.
- Skiena, S. S. (2008). *The Algorithm Design Manual* (2nd ed.). Springer. ISBN: 978-1848000698.

Online References

- LeetCode (<u>www.leetcode.com</u>)
- HackerRank (www.h System Design Primer (https://github.com/donnemartin/system-designprimer)ackerrank.com)
- Coursera "Data Structures and Algorithms Specialization" by University of California, San Diego & National Research University Higher School of Economics

SEMESTER: VII

DISCIPLINE SPECIFIC ELECTIVE-I

SECURE CODING AND VULNERABILITIES

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Secure Coding & Vulnerabilities	ENSP301	4-0-0	4	40

Type of Course:	Minor (DEPARTMEN	T ELECTIV	E-I)	
Pre-requisite(s), if any: Fundamentals of Programming and Networks				

Course Perspective: This course provides an in-depth exploration of secure coding practices and the identification and mitigation of common vulnerabilities in software development. Students will gain a solid foundation in security concepts, secure application design, and the implementation of security best practices throughout the software development lifecycle. By understanding the principles of secure coding and the types of vulnerabilities that can compromise applications, students will be equipped to develop robust, secure software. The course covers essential topics such as input validation, authentication, cryptography, buffer overflows, SQL injection, and application security testing. The course is divided into four modules:

- a) Introduction to Coding and Security
- b) Secure Application Design and Architecture
- c) Secure Coding Practices and Vulnerabilities
- d) Application Security Testing and Deployment

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding different types of application security threats and their potential impact.
CO 2	Applying secure design principles and architectures to develop robust and secure applications.
CO 3	Implementing secure coding practices for input validation, authentication, cryptography, session management, and error handling.
CO 4	Conducting static and dynamic application security testing to identify vulnerabilities and implement secure deployment and maintenance practices.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to coding and Security	No. of hours: 10		
Content				
Introduction-securit	y concepts-CIA Triad, Viruses, Trojans, and Worms, thr	eat, vulnerability, risk, attack.		
Coding Standards:	Dirty Code and Dirty Compiler, Dynamic Memory Man	nagement functions, Common		
memory manageme	ent Errors (Initialization Errors, Forget to Check Return V	alues, accessing already freed		
memory, Freeing th	e same memory multiple times, Forget to free the allocate	d memory), Integer Security -		
Introduction to int	eger types: Integer Data Types, data type conversions	s, Integer vulnerabilities and		
mitigation strategie	5			
Unit Number: 2 Title: Secure Application Design and Architecture		No. of hours: 10		
Content Security requirements gathering and analysis, Secure software development life cycle (SSDLC),				
Security issues while writing SRS, Design phase security, Development Phase, Test Phase, Maintenance				
Phase, Writing Secure Code - Best Practices SD3 (Secure by design, default and deployment), Security				
principles and Secure Product Development Timeline.				
Unit Number: 3	Title: Secure Coding Practices and Vulnerabilities	No. of hours: 10		

Content Input validation Techniques-whitelist validation, regular expressions, authentication and authorization, Cryptography, buffer overflows, Session management and protection against session-related attacks, Secure error handling and logging practices, SQL Injection Techniques and Remedies, Race conditions

Unit Number: 4	Title: Application Security Testing and Deployment	No. of hours: 10
----------------	--	------------------

Content Security code overview, Secure software installation. The Role of the Security Tester, Building the Security Test Plan. Testing HTTP-Based Applications, Testing File-Based Applications, Testing Clients with Rogue Servers, Static and Dynamic Application Security Testing (SAST & DAST), Secure Deployment and Maintenance, Patch management and software updates, Vulnerability scanning and penetration testing.

Learning Experiences:

Classroom Learning Experience

- 1. **Hands-on Vulnerability Testing**: Practice identifying and mitigating common software vulnerabilities through hands-on exercises.
- 2. **Code Review Sessions**: Conduct peer code reviews to spot potential security flaws and enhance secure coding practices.
- 3. **Case Studies**: Analyze real-world security breaches to understand the exploitation of vulnerabilities.
- 4. **Interactive Labs**: Implement secure coding techniques such as input validation and buffer overflow protection.
- 5. **Security Audits**: Perform security audits on sample applications to assess vulnerabilities like SQL injection and session hijacking.
- 6. **Role Play**: Simulate attacker and defender roles in vulnerability exploitation and mitigation scenarios.

Outside Classroom Learning Experience

- 1. **Project-Based Learning**: Develop secure applications by applying best practices in secure design, coding, and testing.
- Tools Exploration: Learn to use static and dynamic application security testing tools (SAST & DAST) for real-world applications.
- 3. **Collaborative Learning**: Work in groups to design security testing plans and assess security risks in various application environments.
- 4. **Real-World Simulations**: Conduct vulnerability scanning and penetration testing in simulated deployment environments.

References

- 1. Secure Coding: Principles and Practices, Mark G. Graff, Kenneth R. Van Wyk, O'Reilly Media
- 2. Writing Secure Code, Michael Howard and David LeBlanc, Microsoft Press, 2nd Edition, 2004
- 3. Buffer Overflow Attacks: Detect, Exploit, Prevent by Jason Deckard ,Syngress,1st Edition, 2005
- 4. Threat Modeling, Frank Swiderski and Window Snyder, Microsoft Professional, 1st Edition, 2004
- Secure Coding: Principles and Practices by Mark G. Graff, Kenneth R. van Wyk, Publisher(s): O'Reilly Media, Inc., 2003
- The Software Vulnerability Guide (Programming Series) by H. Thompson (Author), Scott G. Chase, 2005

Additional Readings:

Online Learning References for "Secure Coding and Vulnerabilities"

- 1. OWASP Secure Coding Practices Quick Reference Guide
 - This guide provides a quick reference to secure coding practices based on OWASP's recommendations for secure software development.
 - Link: <u>OWASP Secure Coding Practices</u>
- 2. NPTEL Secure Coding
 - Offered by IITs through NPTEL, this course covers secure coding practices and principles for writing secure software.
 - Link: <u>NPTEL Secure Coding</u>

3. Mozilla Developer Network (MDN) - Web Security

- Comprehensive documentation on web security principles, secure coding practices, and common vulnerabilities in web applications.
- Link: <u>MDN Web Security</u>

4. Google Code University - Web Security

- Learn about web security from Google, including secure coding practices and how to protect web applications from common threats.
- Link: Google Code University Web Security

SECURE CODING AND VULNERABILITIES LAB

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	
Secure Coding & Vulnerabilities Lab	ENSP351	0-0-2	1	
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)			
Pre-requisite(s), if any: Fundamentals of Programming and Networks				

Defined Course Outcomes

COs	Statements
CO 1	Implementing fundamental security concepts such as the CIA Triad (Confidentiality, Integrity, and Availability) and demonstrate secure coding practices to prevent common vulnerabilities.
CO 2	Analyzing and fix memory management errors and integer vulnerabilities, applying mitigation strategies to enhance software security.
CO 3	Developing secure software by following the Secure Software Development Life Cycle (SSDLC), incorporating security principles and best practices throughout the development process.
CO 4	Designing and test secure applications, performing vulnerability scanning, penetration testing, and implementing security measures to protect against attacks such as SQL injection and buffer overflow.

Lab Experiments

Ex. No	Experiment Title	Mapped
		CO/COs
P1	Project Title: Secure Memory Management System	CO1
1		
	Problem Statement: Develop a secure memory management system for a	
	critical application such as a healthcare management system. This system	
	should handle dynamic memory allocation and de-allocation securely,	
	preventing common memory management vulnerabilities.	

P2	Project Title: Secure E-commerce Platform Design	CO2
	Problem Statement: Design and implement a secure e-commerce platform	
	that ensures data security throughout the software development life cycle	
	(SDLC). The platform should handle sensitive user information securely and	
	provide a robust security architecture.	
P3	Project Title: Secure Banking Application	CO3
	Problem Statement: Develop a secure online banking application that ensures	
	the protection of user data and prevents common vulnerabilities such as SQL	
	injection, buffer overflow, and session hijacking.	
P4	Project Title: Comprehensive Security Testing and Deployment for a	CO4
	Social Media Platform	
	Problem Statement: Develop a social media platform with a focus on security	
	testing and secure deployment. The platform should protect user data and	
	provide a secure environment for social interactions.	

CYBER CRIME INVESTIGATION & DIGITAL

FORENSICS

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
Cyber Crime		4-0-0	4	40
Investigation & Digital	ENSP303			
Forensics				

Type of Course:

Minor (DEPARTMENT ELECTIVE-I)

Pre-requisite(s), if any: **Basics of Cybersecurity**

Course Perspective: The course offers an in-depth exploration of the methodologies and techniques employed in identifying, investigating, and prosecuting cybercrimes. As digital technologies permeate every aspect of modern life, understanding how to safeguard and investigate electronic evidence becomes crucial for ensuring security and justice. This course covers the foundational concepts of digital forensics, types of cybercrimes, investigation procedures, and the utilization of forensic tools. It prepares students to handle and analyze digital evidence proficiently, contributing to the effective enforcement of cyber laws. The course is divided into four comprehensive units:

- a) Introduction
- b) Types of Cyber Crimes
- c) Investigation of Cyber Crimes
- d) Forensic Tools and Processing of Electronic Evidence

The Course Outcomes (COs). On completion of the course the participants will be able to:

COs	Statements
CO 1	Understanding the nature and classification of conventional and cyber-crimes.
CO 2	Analyzing various types of cyber-crimes and their modes of operation.
CO 3	Evaluating the impact of cyber-crimes on individuals, organizations, and society.
CO 4	Developing an understanding of digital forensics and the investigative procedures used in cyber- crime cases.
CO 5	Applying forensic tools and techniques to retrieve and analyze digital evidence.

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Title: Introduction	No. of hours: 10
Content: Introduc	tion to Digital Forensics, Definition and types of cyb	ercrimes, electronic evidence

and handling, electronic media, collection, searching and storage of electronic media, introduction to internet crimes, hacking and cracking, credit card and ATM frauds, web technology, cryptography, emerging digital crimes and modules.

Unit Number: 2	Title:	Types of Cyber Crimes	No. of hours: 10
----------------	--------	-----------------------	------------------

Content: Crimes targeting Computers: Unauthorized Access Packet Sniffing Malicious Codes including Trojans, Viruses, Logic Bombs, etc. Online based Cyber Crimes: Phishing and its variants Web Spoofing and E-mail Spoofing Cyber Stalking Web defacement financial crimes, ATM and Card Crimes etc. Spamming Commercial espionage and Commercial Extortion online Software and Hardware Piracy Money Laundering Fraud& Cheating Other Cyber Crimes.

Unit Number: 3	Title: Investigation of Cyber Crimes	No. of hours: 10	
Content: Investig	ation of malicious applications Agencies for investi	igation in India, their powers	
and their constitution as per Indian Laws Procedures followed by First Responders; Evidence			
Collection and	Seizure Procedures of Digital mediums Securing	the Scene, Documenting	
the Scene, Evid	ence Collection and Transportation Data Acquisition D	ata Analysis Reporting	

Unit Number: 4	Title: Forensic Tools and Processing of Electronic	No of house 10
	Evidence	No. of hours: 10

Content:Introduction to Forensic Tools, Usage of Slack space, tools for Disk Imaging, Data Recovery, Vulnerability Assessment Tools, Encase and FTK tools, Anti Forensics and probable counters, retrieving information, process of computer forensics and digital investigations, processing of digital evidence, digital images, damaged SIM and data recovery, multimedia evidence, retrieving deleted data: desktops, laptops and mobiles, retrieving data from slack space, renamed file, ghosting, compressed files.

L1= Remember, L2= Understand, L3= Apply, L4= Analyze, L5= Evaluate and L6= Create

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures and Video Sessions**: Engage with interactive presentations and videos on cyber crime and digital forensics.
- 2. **Problem-Based Theory Assignments**: Analyze real-world cyber crime scenarios to encourage complex problem-solving.
- 3. **Project-Based Lab Assignments**: Use forensic tools in hands-on labs to investigate simulated cyber crimes.

- 4. Collaborative Group Work: Work in groups on case studies to promote teamwork and peer learning.
- 5. Continuous Assessment and Feedback: Monitor progress through assessments with regular instructor feedback.

Outside Classroom Learning Experience

- 1. Use of ICT Tools and Moodle LMS: Access course materials via Moodle and use interactive boards for discussions.
- 2. Engagement with a Question Bank and Model Papers: Utilize a question bank and model papers for exam preparation.
- 3. **Application of Theoretical Knowledge to Practical Scenarios**: Apply theory to practical cases in the full cycle of cyber crime investigations.

References

- 1. Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie
- 2. C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011.
- 3. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013.
- Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004.

Additional Readings:

Online Learning References:

I) Cybrary - Digital Forensics

- a. A free online course that covers various aspects of digital forensics, including tools, techniques, and procedures for investigating cybercrimes.
- b. Link: Cybrary Digital Forensics
- II) Pluralsight Digital Forensics Fundamentals
 - a. This course offers a thorough understanding of digital forensics, covering the fundamentals, tools, and techniques used in the field.
 - b. Link: Pluralsight Digital Forensics Fundamentals

III) SANS Institute - Digital Forensics and Incident Response Blog

- a. A blog providing insights, case studies, and updates on the latest in digital forensics and incident response.
- b. Link: SANS Institute Digital Forensics Blog

IV) **OWASP - Open Web Application Security Project**

- a. Provides resources on web security, including best practices for secure coding and tools for vulnerability assessment, which are essential for investigating cybercrimes.
- b. Link: OWASP Open Web Application Security Project

CYBER CRIME INVESTIGATION & DIGITAL

FORENSICS LAB

Program Name:	B.Tech CSE with specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Cyber Crime		0-0-2	1
Investigation & Digital	ENSP353		
Forensics Lab			
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)		
Pre-requisite(s), if any: Basics of Cybersecurity			

Defined Course Outcomes

COs	Statements
CO 1	Understanding the fundamental concepts and principles of digital forensics and cybercrimes.
CO 2	Applying the knowledge of digital forensics techniques and procedures to collect, analyse, and preserve electronic evidence in various types of cybercrimes.
CO 3	Evaluating and utilize forensic tools and technologies for data acquisition, analysis, and recovery in the investigation of cybercrimes.
CO 4	Analyzing and interpret digital evidence obtained from different sources, such as electronic media, internet crimes, malicious applications, and various forms of cybercrimes.

Lab Experiments

	Experiment Title	Mapped
		CO/COs
1	Project Title: Comprehensive Study on Cybercrime and Digital Forensics	CO1
	Problem Statement: Conduct a comprehensive study on various types of	
	cybercrimes and the role of digital forensics in investigating these crimes. The	

	project will involve collecting electronic evidence, understanding cybercrime	
	techniques, and applying digital forensics methodologies.	
2	Project Title: Simulation and Prevention of Cyber Crimes	CO2
	Problem Statement: Develop a comprehensive simulation and prevention	
	strategy for various types of cybercrimes. The project will involve creating	
	scenarios for unauthorized access, phishing, and malware attacks, and	
	implementing preventive measures.	
3	Project Title: Investigation and Reporting of Cyber Crime Incidents	CO3
	Problem Statement: Investigate a simulated cybercrime incident, collect and	
	analyze digital evidence, and report the findings. The project will cover the entire	
	investigation process from securing the scene to data analysis and reporting.	
4	Project Title: Advanced Digital Forensics and Evidence Processing	CO4
	Problem Statement: Develop a system for advanced digital forensics and	
	processing of electronic evidence. The project will involve using forensic tools for	
	data recovery, vulnerability assessment, and processing digital evidence from	
	various devices.	

AI IN CYBER SECURITY

Program Name:	e: B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits	Contact Hours	
AI in Cyber Security	ENSP305	4-0-0	4	40	
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)				
Pre-requisite(s), if any: basi	Pre-requisite(s), if any: basic understanding of web development technologies such as HTML, CSS, and				
JavaScript. Additionally, students should have some familiarity with networking concepts, operating					
systems, and databases.					

Course Perspective. The course delves into the integration of Artificial Intelligence (AI) techniques within the realm of cyber security, highlighting the transformative potential of AI in detecting, preventing, and responding to cyber threats. As cyber threats evolve in complexity and scale, AI offers advanced methodologies to enhance security measures and mitigate risks effectively. This course provides a comprehensive understanding of the applications of AI in cyber security, from fundamental machine learning and deep learning techniques to their practical implementations in threat detection and prevention.

Students will explore the history, evolution, and current trends of AI in cyber security, gaining insights into the ethical considerations and challenges associated with the adoption of AI technologies in this critical field. Through detailed case studies and practical examples, the course bridges theoretical concepts with real-world applications, equipping students with the skills necessary to leverage AI for robust cyber defense strategies. The course is structured into four modules:

- a) Introduction to AI and Cyber Security:
- b) Machine Learning Techniques for Cyber Security:
- c) Deep Learning Techniques for Cyber Security:
- d) AI for Cyber Security: Threat Detection and Prevention

COs	Statements
CO 1	Understanding the concepts and applications of AI in the field of cyber security.
CO 2	Expressing the ethical and legal considerations associated with the use of AI in cyber security.
CO 3	Determining emerging trends and technologies in AI for cyber security, and their potential impact on the field.
CO 4	Identifying strategies for integrating AI-driven solutions into existing cyber security frameworks, policies, and practices.
CO 5	Articulating critical thinking and problem-solving skills to address real-world cyber security challenges using AI techniques.
CO 6	Designing machine learning techniques for threat detection and prevention in cyber security, including supervised and unsupervised algorithms.

The Course Outcomes (COs). On completion of the course the participants will be:

CO = Course outcomes. A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to AI and Cyber Security	No. of hours: 10		
Content:				
Overview of Artificial Intelligence and its applications in Cyber Security History and evolution of AI in				
cyber security, Understanding of the Cyber Security threats landscape, Familiarization with the latest trends				
and techniques of AI in Cyber Security, Basic principles of Machine Learning and Deep Learning in Cyber				
Security, Ethical considerations and challenges of using AI in cyber security.				
	Title: Machine Learning Techniques for Cyber			

Unit Number: 2	Title:	Machine	Learning	Techniques	for	Cyber	No of hours: 10
	Security						110. 01 110013. 10

Content:

An introduction to Machine Learning techniques, Supervised and unsupervised Machine Learning models in Cyber Security, feature engineering and data preparation for Machine Learning models, Case studies demonstrating the application of Machine Learning to Cyber Security problems.

Unit Number: 3	Title: Deep Learning Techniques for Cyber	No. of hours: 10

Content:

Introduction to Deep Learning techniques, Convolutional Neural Networks (CNNs) and their application in Cyber Security, Recurrent Neural Networks (RNNs) and their application in Cyber Security, GANs and their application in Cyber Security, Case studies demonstrating the application of Deep Learning to Cyber Security problems.

Unit Number: 4	Title:	AI for Cyber	Security:	Threat	Detection	and	No. of hours:	10
	Preventi	on						10

Content:

Introduction to AI and its applications in threat detection and prevention ,Overview of different types of threats in cyber security and their characteristics ,Understanding the limitations of traditional threat detection and prevention methods ,Fundamentals of machine learning and deep learning for threat detection and prevention ,Supervised machine learning algorithms for threat detection, such as decision trees, support vector machines, and random forests ,Unsupervised machine learning algorithms for anomaly detection, such as clustering and outlier detection ,Deep learning techniques for threat detection, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) ,Feature selection and feature engineering for machine learning in threat detection, Emerging trends and challenges in AI for threat detection and prevention, including adversarial machine learning, explainable AI, and privacy concerns.

Learning Experiences:

Classroom Learning Experience

- 1. **Interactive Lectures and Video Sessions**: Engage with presentations and videos on AI in cyber security.
- 2. **Problem-Based Theory Assignments**: Analyze real-world threats and AI solutions to enhance critical thinking.
- 3. **Project-Based Lab Assignments**: Implement AI algorithms in labs to detect and mitigate cyber threats.
- 4. **Collaborative Group Work**: Work in teams on case studies at the intersection of AI and cyber security.
- 5. Continuous Assessment and Feedback: Monitor progress through assessments and receive regular feedback.

Outside Classroom Learning Experience

- 1. Use of ICT Tools and Moodle LMS: Access course materials via Moodle LMS for flexible learning.
- 2. Engagement with a Question Bank and Model Papers: Utilize a question bank and model papers for exam prep.
- 3. **Application of Theoretical Knowledge to Practical Scenarios**: Apply AI concepts to real-world cyber security cases.

Text Books:

- 1. Artificial Intelligence for Cybersecurity" by Bhaskar Sinha (Auerbach Publications)
- 2. Machine Learning and Security: Protecting Systems with Data and Algorithms" by Clarence Chio and David Freeman (O'Reilly Media)

Additional Readings:

Online Learning Resources:

I) Cybrary - Introduction to Artificial Intelligence for Cyber Security

- a. This course offers insights into how AI can be applied to cyber security, including threat detection and response.
- b. Link: Cybrary Introduction to Artificial Intelligence for Cyber Security

II) Pluralsight - Machine Learning and AI for Cybersecurity

- a. This course provides an in-depth look at how machine learning and AI can be used to enhance cyber security measures.
- b. Link: Pluralsight Machine Learning and AI for Cybersecurity
- III) FutureLearn Artificial Intelligence for Cyber Security by Coventry University

- a. This course explores the application of AI in cyber security, covering topics like threat detection, response, and mitigation.
- b. Link: FutureLearn Artificial Intelligence for Cyber Security

IV) MIT OpenCourseWare - Artificial Intelligence

- a. Lecture notes, assignments, and exams from MIT's course on Artificial Intelligence, providing a deep dive into AI concepts applicable to cyber security.
- b. Link: MIT OpenCourseWare Artificial Intelligence

V) IBM - Introduction to Cyber Security Tools & Cyber Attacks

- a. A course that covers various cyber security tools and techniques, including the use of AI and machine learning for threat detection and prevention.
- b. Link: IBM Introduction to Cyber Security Tools & Cyber Attacks

AI IN CYBER SECURITY LAB

Program Name:	B. Tech CSE with specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	
AI in Cyber Security Lab	ENSP355	0-0-2	1	
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)			
Pre-requisite(s), if any: basic understanding of web development technologies such as HTML, CSS, and				
JavaScript. Additionally, students should have some familiarity with networking concepts, operating				
systems, and databases.				

Lab Experiments

Defined Course Outcomes

COs	Statement
	Analyzing the history, evolution, and ethical considerations of AI in cyber security,
CO 1	documenting key milestones and advancements, and discussing the implications of AI
	applications.
	Implementing and evaluate machine learning models for classifying and detecting cyber
CO 2	threats, using various datasets and techniques such as supervised and unsupervised learning,
	deep learning, and anomaly detection.
CO 3	Developing and apply feature engineering, data preparation, and model training techniques to
05	enhance the performance and accuracy of cyber security models.
	Conducting comprehensive case studies and surveys on the application of AI in cyber
CO 4	security, identifying emerging trends, challenges, and documenting methodologies and
	findings.

Ex. No	Experiment Title	Mapped
		CO/COs
P1	Project Title: Comprehensive Analysis of AI in Cyber Security	CO1
	Problem Statement: Conduct a comprehensive analysis of the role of AI in	
	cyber security. The project will involve studying the history, evolution, and	
	current trends in AI applications for cyber security, and understanding the basic	
	principles of machine learning and deep learning in this context.	
P2	Project Title: Machine Learning Models for Cyber Threat Detection	CO2
	Problem Statement: Develop and evaluate different machine learning models	
	for detecting cyber threats. The project will involve implementing supervised	
	and unsupervised learning techniques, performing feature engineering, and	
	analyzing case studies.	
P3	Project Title: Deep Learning Models for Advanced Cyber Threat Detection	CO3
	Problem Statement: Develop and evaluate deep learning models for advanced	
	cyber threat detection. The project will involve implementing CNNs, RNNs,	

	and GANs, and analyzing their applications in cyber security.						
P4	Project Title: AI-Based Comprehensive Threat Detection System						
	Problem Statement: Develop a comprehensive AI-based system for threat						
	detection and prevention in cyber security. The project will involve						
	implementing machine learning and deep learning models and addressing the						
	challenges of traditional threat detection methods.						

SOCIAL MEDIA SECURITY

Program Name:	B. Tech CSE with specialization in Cybersecurity					
Course Name:	Course Code	L-T-P	Credits	Contact Hours		
Social Media Security	ENSP307	4-0-0	4	40		
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)					
Pre-requisite(s), if any: Fundamentals of Cyber and Digital Media						

Course Perspective. This course introduces students to the critical concepts of social media security, addressing the growing need to understand and manage security and privacy issues in the digital age. Social media platforms have become integral to personal, professional, and commercial interactions, creating a complex landscape of potential security threats and privacy concerns. This course aims to equip students with the knowledge and skills required to navigate and mitigate these risks effectively. Students will explore the technical, legal, and social dimensions of social media security, developing strategies to safeguard personal information, ensure user trust, and comply with legal standards. The course is divided into four modules:

- a) Social Media Overview
- b) Security Issues in Social Media
- c) Privacy Issues in Social Media
- d) Social Media Security: Laws, Best Practices, and Case Studies

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Demonstrating an understanding of the different types of social media platforms, their features, and their impact on communication, marketing, and society.
CO 2	Acquiring knowledge and skills in social media monitoring techniques, including data collection, analysis, and the use of relevant tools and technologies.
CO 3	Developing the ability to analyze and evaluate viral content on social media, understand the factors contributing to its spread, and recognize its implications for marketing and online engagement.
CO 4	Identifying the challenges, opportunities, and pitfalls associated with social media marketing, and formulate strategies for effective audience targeting, engagement, and brand promotion.
CO 5	Designing strategies to safeguard personal information, foster user trust, and mitigate associated risks.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Social Media Overview	No. of hours: 10			
Content Summar	y:				
Introduction to So	ocial media. Types of social media, Social	media platforms, Social media monitoring,			
Hashtag, Viral content, Social media marketing, challenges, opportunities, and pitfalls in online social					
networks, APIs, Collecting data from Online Social Media, Social Media Content Analysis - BoW Model,					
TF-IDF; Network Analysis - Node Centrality Measures, Degree Distribution, Average Path Length,					
Clustering Coeffic	ient, Power Law; Synthetic Networks - Rando	om Graphs, Preferential Attachment Model.			

Unit Number: 2	Title:	Social	Media	Management	and	No. of hours:	10
Omt Number 2	Market	ting				ivo. or nours.	10

Content Summary:

Strategies for using social media for employment screening and recruitment, Customer engagement and content management, Analysis of effective versus ineffective social media campaigns, Ethical considerations and privacy issues in crowdsourcing, Managing and promoting social media presence

Unit Number: 3	Title: Privacy Issues in Social Media	No. of hours: 10		
Contant Summary				

Content Summary:

Overview, Privacy Settings, PII Leakage, Identity vs Attribute Disclosure Attacks, Inference Attacks, Deanonymization Attacks, Privacy Metrics - k-anonymity, l-diversity, Personalization vs Privacy, Differential Privacy, Social Media and User Trust.

Unit Number 4	Title:	Social Media Security: Laws	No. of hours:	10
Onit Number. 4	Best Pra	actices, and Case Studies	INO. OI HOUIS.	10

Content Summary:

Laws regarding posting of inappropriate content, Best practices for the use of Social media, Content Moderation and Removal Policies, User Authentication and Access Control, Security Awareness and Education, Social media Case studies-Facebook, Twitter, Instagram, YouTube, LinkedIn, StackOverflow, GitHub, Quora, SnapChat, Reddit, FourSquare, Yelp.

Learning Experiences

Classroom Learning Experience

- 1. **Interactive Lectures and Video Sessions**: Learn about social media security threats through engaging presentations.
- 2. **Problem-Based Theory Assignments**: Analyze real incidents to enhance critical thinking on social media security.
- 3. **Project-Based Lab Assignments**: Implement security measures in labs to protect social media accounts.
- 4. **Collaborative Group Work**: Explore security risks through team case studies on social media platforms.
- Continuous Assessment and Feedback: Receive ongoing assessments and instructor feedback on progress.

Outside Classroom Learning Experience

1. Use of ICT Tools and Moodle LMS: Access course materials anytime via Moodle LMS.

- 2. Engagement with a Question Bank and Model Papers: Prepare for exams using a question bank and model papers.
- 3. **Application of Theoretical Knowledge to Practical Scenarios**: Apply concepts to real-world social media security cases.

References

- 1. Mastering Social Media Mining, Bonzanini Marco, Packt Publishing Limited
- 2. Mining the Social Web, Mikhail Klassen and Matthew A. Russell, O'Reilly Media, Inc
- 3. Social media mining: an introduction, Zafarani, Reza, Mohammad Ali Abbasi, and Huan Liu, Cambridge University Press
- 4. Social Media Security: Leveraging Social Networking While Mitigating Risk, Michael Cross, Syngress
- Social Media and the Law: A Guidebook for Communication Students and Professionals, Daxton R. Stewart, Taylor & Francis Ltd
- Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.

Additional Readings:

Online Learning Resources for Social Media Security

- **R 1.** Coursera Social Media Marketing Specialization
 - **Provider:** Northwestern University
 - **Description:** This specialization covers the major social media platforms, marketing strategies, and data analysis tools.
 - Link: Coursera Social Media Marketing Specialization
- **R 2.** edX Cybersecurity Fundamentals
 - **Provider:** Rochester Institute of Technology
 - **Description:** This course offers foundational knowledge in cybersecurity, including threats, vulnerabilities, and defense strategies.
 - Link: <u>edX Cybersecurity Fundamentals</u>
- **R 3.** Udemy The Complete Cyber Security Course: Network Security!
 - **Instructor:** Nathan House
 - **Description:** This comprehensive course covers network security, including how to secure your network, protect your devices, and more.
 - Link: <u>Udemy Cyber Security Course</u>

SOCIAL MEDIA SECURITY LAB

Program Name:	B. Tech CSE with specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits		
Social Media Security Lab	ENSP357	0-0-2	1		
Type of Course:	Minor (DEPARTMENT ELECTIVE-I)				
Pre-requisite(s), if any: Fundamentals of Cyber and Digital Media					

Course Outcomes (CO)

COs	Statements
CO1	Analyzing different social media platforms, their features, and the ethical and privacy considerations in crowdsourcing and data handling.
CO2	Implementing data collection, text analysis, and network analysis techniques on social media datasets, demonstrating proficiency in using APIs and various models.
CO3	Developing strategies and plans for using social media in various contexts such as employment screening, customer engagement, and small business promotion.
CO4	Evaluating privacy settings, metrics, and security incidents on social media platforms, applying best practices for user authentication, access control, and content moderation.

LAB EXPERIMENTS

Ex. No	Experiment Title	Mapped CO/COs
P1	Project Title: Comprehensive Analysis of Social Media Platforms	CO1
	Problem Statement: Conduct a comprehensive analysis of different	
	social media platforms, their features, and the data they generate. The	
	project will involve collecting and analyzing data from social media,	
	performing content analysis, and understanding network properties.	
P2	Project Title: Effective Social Media Management and Marketing	CO2
	Strategy	
	Problem Statement: Develop an effective social media management	
	and marketing strategy for a small business. The project will involve	

	analyzing customer engagement, creating marketing strategies, and	
	addressing ethical considerations in social media use.	
P3	Project Title: Privacy Protection in Social Media	CO3
	Problem Statement: Develop strategies and tools to protect user	
	privacy on social media platforms. The project will involve analyzing	
	privacy settings, simulating privacy attacks, and evaluating privacy	
	metrics.	
P4	Project Title: Enhancing Security and Compliance on Social	CO4
	Media Platforms	
	Problem Statement: Develop a comprehensive approach to enhance	
	security and ensure compliance with laws on social media platforms.	
	The project will involve researching laws, developing best practices,	
	and analyzing case studies of security incidents.	

(DEPARTMENT ELECTIVE-II) CLOUD COMPUTING

COMPUTATIONAL SERVICES IN THE

CLOUD

Program Name:	B. Tech (Computer Science and Engineering)				
Course Name: Computational	Course Code	LTD	Cuadita	Contact	
Services in The Cloud	Course Code	L-I-P	Creans	Hours	
	ENSP401	4-0-0	4	40	
Type of Course:	Minor (Department Elective III)				
Pre-requisite(s), if any: Basics of Cloud Computing					

Course Perspective. This course introduces students to the fundamental concepts and applications of cloud computing, exploring the paradigm shift towards cloud-based IT resources and services. It covers various cloud service models (IaaS, PaaS, SaaS), deployment models (public, private, hybrid, community), and key characteristics and challenges of cloud computing. Students will learn about virtualization, microservices, cloud storage, serverless computing, and resource management fundamentals. Additionally, the course includes case studies on cloud market analysis, security, compliance, big data handling, and a comparative study of public clouds. By the end of the course, students will be equipped to understand, implement, and analyze cloud computing technologies and solutions. The course is divided into 4 modules:

- a) Foundations of Cloud Computing
- b) Advanced Cloud Computing and Virtualization
- c) Cloud Security, Privacy, and Compliance
- d) Applications of Cloud Computing and Future Trends

COs	Statements		
CO 1	Explaining the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.		
CO 2	Applying the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and cost.		
CO 3	Identifying resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.		
CO 4	Analyzing various cloud programming models and apply them to solve problems on the cloud.		

The Course Outcomes (COs). On completion of the course the participants will be:

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit 1	Number:	Title: Foundations of Cloud Computing	No. of hours: 10			
Content:						
Introduction to Cloud Computing:						
•	Definition	ns and basic concepts				
•	Cloud delivery models (IaaS, PaaS, SaaS)					
•						
•	Benefits and challenges of cloud computing					
Cloud	l Infrastruo	cture and Architecture:				
•	Cloud con	mputing services and inter-cloud interoperability				
•	Virtualization and its importance					
Securi	ity and Eth	ical Issues:				
•	Security and privacy concerns					
•	Ethical is	sues in cloud computing				
Unit	Unit Number: Title: Advanced Cloud Computing and Na of house 12					
2		Virtualization	10. 01 hours. 12			
Conte	ent:					
Virtua	alization T	echnologies:				
•	Virtual m	achine monitors				
•	Full virtualization and paravirtualization					
•	• Virtualization technology (hardware-based and OS-based)					
Resource Management and Scheduling:						
Cloud resource management						
• Scheduling algorithms and dynamic application scaling						
Optimization of network virtualization						
Virtualization Security:						
Virtualization security risks						
Unit	Number:	Title: Cloud Security, Privacy, and	No of hourse 10			
3		Compliance	110. 01 110015; 10			

Content:

Cloud Security Basics:

- Cloud security risks and challenges
- Security mechanisms (encryption, hashing, digital signatures)
- Identity and access management

Advanced Security Measures:

- Trusted virtual machine monitors
- Cloud security policies and controls
- Cloud security threats (traffic eavesdropping, denial of service)

Compliance and Legal Issues:

- Multi-regional compliance
- Privacy impact assessment
- Case studies on cloud security

Unit Number	Title: Applications of Cloud Computing and						
4	Future Trends	No. of hours: 8					
Content:							
Cloud Applications:							
Scientific research and high-performance computing							
Social computing and digital content							
Big data and cloud-based AI/ML applications							
Emerging Trends:							
• Edge c	Edge computing and fog computing						
• Future	Future challenges and opportunities						
• Energy use and ecological impact of data centers							

Learning Experiences:

Classroom Learning Experience

- 1. **Interactive Lectures and Video Sessions**: Explore cloud computing concepts through engaging presentations.
- 2. **Problem-Based Theory Assignments**: Analyze real-world scenarios to enhance problem-solving skills.
- 3. **Project-Based Lab Assignments**: Gain practical experience by implementing cloud solutions in labs.

- 4. Collaborative Group Work: Collaborate on case studies related to cloud services.
- 5. Continuous Assessment and Feedback: Receive ongoing assessments and instructor feedback.

Outside Classroom Learning Experience

- 1. Use of ICT Tools and Moodle LMS: Access course materials anytime via Moodle.
- 2. Engagement with a Question Bank and Model Papers: Prepare for exams with a question bank and model papers.
- 3. **Application of Theoretical Knowledge to Practical Scenarios**: Apply cloud concepts to realworld situations.

Textbooks:

- 1. Cloud Computing: Concepts, Technology & Architecture by Thomas
- 2. "Cloud Computing: Theory and Practice" by Dan C. Marinescu
- 3. "Cloud Computing: Concepts, Technology & Architecture" by Thomas Erl, Zaigham Mahmood, and Ricardo Puttini

References

- Lizhe Wang, Rajiv Ranjan, Jinjun Chen and Boualem Benatallah, Cloud Computing (1 ed.), CRC Press, 2017. ISBN 978-1351833097.
- 2. Judith S. Hurwitz and Daniel Kirsch, Cloud Computing For Dummies (2 ed.), Hoboken: John Wiley & Sons, 2020. ISBN 978-1119546658.

COMPUTATIONAL SERVICES IN THE

CLOUD LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name: Computational Services in	Course Code	L-T-P	Credits	
The Cloud Lab	ENSP451	0-0-2	1	
Type of Course:	Minor (Department Elective III)			
Pre-requisite(s), if any: Basics of Cloud Computing				

Defined Course Outcomes

COs	Statement				
CO 1	Implementing advanced resource management and scheduling systems in cloud environments to optimize the efficiency and performance of virtualized resources.				
CO 2	Developing comprehensive security and compliance frameworks for cloud infrastructures, addressing various security threats and ensuring regulatory compliance.				
CO 3	Enhancing data privacy and compliance strategies for multi-regional cloud deployments, ensuring adherence to global and regional data protection regulations.				
CO 4	Leveraging cloud computing resources for high-performance scientific research, enabling scalable and efficient data processing, storage, and analysis.				

List of Programs

S.N	Project Detail	COs
1	Set up a virtual machine (VM) on a cloud platform (e.g., AWS, Azure, Google	CO1
	Cloud). Explore different VM configurations and understand the basics of IaaS.	
2	Deploy a simple web application using a PaaS provider (e.g., Heroku, Google App	CO1
	Engine). Demonstrate the deployment process and manage application scaling	
3	Implement a cloud storage solution using a SaaS provider (e.g., Dropbox, Google	CO1
	Drive). Upload, share, and manage files to understand cloud storage benefits and	
	challenges.	
4	Investigate the security and privacy settings of a cloud service provider. Configure	CO1
	security groups and access controls to secure your cloud resources.	
5	Install and configure a virtual machine monitor (VMM) like VMware or VirtualBox.	CO2
	Compare full virtualization and paravirtualization techniques.	
6	Install and configure a virtual machine monitor (VMM) like VMware or VirtualBox.	CO2
	Compare full virtualization and paravirtualization techniques.	
7	Optimize network virtualization by setting up and managing virtual networks in a	CO2
	cloud environment. Analyze the performance benefits of network virtualization.	
8	Implement encryption and hashing mechanisms to secure data stored in the cloud.	CO3
	Demonstrate how these mechanisms protect data integrity and confidentiality.	
9	Set up identity and access management (IAM) in a cloud environment. Configure	CO3
	single sign-on (SSO) for multiple cloud services to streamline user access.	
10	Develop a cloud-based AI application using a cloud provider's machine learning	CO4
	services (e.g., AWS SageMaker, Google AI Platform). Train and deploy a machine	
	learning model in the cloud.	
11	Implement a cloud-based big data solution using Hadoop or Spark on a cloud	CO4
	platform. Process and analyze a large dataset to understand the benefits of cloud-	
	based big data processing.	
12	Explore edge computing by deploying a cloud application that interacts with IoT	CO4
	devices. Demonstrate how edge computing can reduce latency and improve	
	performance.	

MICROSOFT AZURE CLOUD

FUNDAMENTALS

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name: Microsoft Azure Cloud Fundamentals	Course Code	L-T-P	Credits	Contact Hours
	ENSP403	4-0-0	4	40
Type of Course:	Minor (Department Elective III)			
Pre-requisite(s), if any: Basics of Cloud Computing				

Course Perspective. This course introduces students to the fundamental concepts of cloud computing with a focus on Microsoft Azure. It aims to bridge the gap between theoretical cloud principles and

practical Azure applications, emphasizing the relevance of cloud services in modern engineering and technology. Students will explore core topics such as cloud computing models, Azure architecture, compute and networking services, storage services, and cost management. The course is divided into four modules:

- 1. Introduction to Cloud Computing and Azure Fundamentals
- 2. Introduction to Microsoft Azure
- 3. Azure Storage Services and Identity Management
- 4. Azure Cost Management, Governance, and Monitoring

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Identifying the core concepts of cloud computing and Microsoft Azure, including deployment models and service models.
CO 2	Understanding the benefits of cloud services, such as high availability, scalability, and security.
CO 3	Understanding Azure architecture components and compute/networking services, analyzing their functionality and use cases.
CO 4	Determining the appropriate Azure storage services for different performance requirements and analyze identity management and security features for access control.
CO 5	Analyzing cost management strategies in Azure, analyze governance and compliance tools, and determine effective methods for managing and deploying Azure resources.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to Cloud Computing and Azure Fundamentals	No. of hours: 10			
Content Summary:					
Cloud Computing Basics: What is cloud computing, Delivery models, deployment models, defining					
attributes, resources, and organization of the infrastructure. Network-Centric Computing and Network-					
Centric Content. Cloud computing delivery models and services, Applications of cloud, Ethical Issues in					

Cloud Computing, Maio	r Challenges Faced by Cloud Comp	Iting	
	Tide Later Lating to Mission 6		N
Unit Number: 2	litle Introduction to Microsoft	t Azure	No. of hours: 12
Content Summary:			
Azure Architecture Co	nponents: Azure regions, availabili	ty zones, datacentre	es, Azure resources, resource
groups, subscriptions, M	anagement groups hierarchy,		
Azure Compute and	Networking Services: Compute t	ypes comparison:	Container instances, VMs,
Functions, Virtual mac	nine options: VMs, VM Scale Se	ets, availability set	ts, Azure Virtual Desktop,
Application hosting opt	ions, Virtual networking: Azure Vi	irtual Networks, su	bnets, peering, DNS, VPN
Gateway, ExpressRoute,	Public and private endpoints		
Unit Number: 3	Title: Azure Storage Servi Management	ces and Identity	No. of hours: 10
Content Summary:			
Azure Storage Services	: Create and manage virtual maching	nes using Azure. D	ifferent VM sizes and types
based on performance re	quirements. VM scaling and load ba	lancing for optimizi	ing application performance.
Azure storage services: I	Blob Storage, Table Storage, File Sto	rage, and Disk Stor	age.
Unit Number: 4	Title: Azure Cost Managen and Monitoring	nent, Governance	No. of hours: 8
Content Summary:			
Cost Management in	Azure: Factors affecting costs,	Pricing and TCC	D calculators, Azure Cost
Management and Billing	tool, Tagging usage.		
Governance and Com	oliance: Azure Blueprints, Azure Pol	icy, Resource locks	, Service Trust Portal
Monitoring Tools in A	zure: Azure Advisor, Azure Service	e Health, Azure Mo	onitor: Log Analytics, alerts,
Application Insights			
Learning Experien Classroom Learnin	ces: g Experience Lectures and Video Sessions: Lect	n Microsoft Agura	concepts through opposing
1. Interactive	Lectures and video sessions: Lean	ii wherosoft Azure (concepts unough engaging

- presentations.
- 2. **Problem-Based Theory Assignments**: Analyze real-world Azure scenarios to develop practical skills.
- 3. **Project-Based Lab Assignments**: Implement Azure solutions in hands-on labs for experiential learning.

- 4. Collaborative Group Work: Work together on case studies focused on Azure applications.
- 5. **Continuous Assessment and Feedback**: Receive regular assessments and instructor feedback to monitor progress.

Outside Classroom Learning Experience

- 1. Use of ICT Tools and Moodle LMS: Access course materials anytime via Moodle for flexible learning.
- 2. Engagement with a Question Bank and Model Papers: Prepare for exams using a question bank and model papers.
- 3. **Application of Theoretical Knowledge to Practical Scenarios**: Apply Azure concepts to realworld scenarios for better understanding.

Text Book:

a) "Cloud Computing: Theory and Practice" by Dan C. Marinescu

b) "Exam Ref AZ-900 Microsoft Azure Fundamentals" by Jim Cheshire.

References

- a) "Exam Ref AZ-900 Microsoft Azure Fundamentals" by Jim Cheshire.
- b) "Microsoft Azure Essentials: Fundamentals of Azure" by Michael Collier and Robin Shahan.
- c) "Azure for Architects: Implementing cloud design, DevOps, IoT, and serverless solutions on your public cloud" by Ritesh Modi.
- d) "Azure Security Center: Protecting your cloud workloads" by Yuri Diogenes, Tom Shinder, and Debra Shinder.
- e) "Azure Cost Management and Billing" by Sjoukje Zaal

Additional Readings:

Online Learning Resources:

I) Microsoft Learn:

Microsoft's official learning platform offers a wide range of Azure courses, modules, and learning paths for beginners to advanced users. Explore topics such as cloud computing basics, Azure architecture components, compute and networking services, storage services, identity management, cost management, governance, and monitoring. <u>Microsoft Learn</u>

R 1. Coursera:

Coursera provides Azure courses offered by top universities and organizations. Topics include cloud computing basics, Azure architecture, services, security, governance, and more. <u>Coursera Azure Courses</u>

2. Open-Source Society University (OSSU):

OSSU offers a structured, open-source curriculum for self-learning various topics, including cloud computing and Azure fundamentals. You can follow their curriculum to gain a comprehensive understanding of Azure concepts and services. <u>OSSU Cloud Computing Curriculum</u>

MICROSOFT AZURE CLOUD

FUNDAMENTALS LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity		
Course Name: Microsoft Azure Cloud	Course Code	L-T-P	Credits
Fundamentals Lab	ENSP453	0-0-2	1

Type of Course:

Minor (Department Elective III)

Pre-requisite(s), if any: Basics of Cloud Computing

Lab Experiments

Defined Course Outcomes

COs	Statement
CO 1	Deploying and manage scalable web applications using Azure architecture components,
	ensuring high availability, fault tolerance, and optimal performance.
CO^2	Developing and optimize Azure storage solutions for data-intensive applications, focusing on
002	efficient data storage, retrieval, and performance.
CO 3	Establishing secure and compliant environments in Azure, ensuring governance, cost
005	management, and continuous monitoring for mission-critical applications.
CO 4	Migrating on-premise applications to Azure, ensuring minimal downtime and optimized
0.0 4	performance through effective planning, resource management, and monitoring.

S.N	Project Detail	COs
	Set up a cloud environment using a chosen cloud provider (e.g., AWS, Azure, Google	CO1
	Cloud). Explore and document the different delivery models (IaaS, PaaS, SaaS) and	
1	deployment models (Public, Private, Hybrid).	
	Implement a network-centric application using cloud services. Demonstrate how network-	CO1
2	centric content can be delivered and managed in a cloud environment.	
		CO1
	Explore a cloud-based application (e.g., Google Docs, Office 365). Analyze its benefits	
3	and the ethical issues it presents in terms of data privacy and security.	
	Explore Azure regions, availability zones, and datacenters. Create and manage Azure	CO2
	resources and resource groups, and understand the subscription and management groups	
4	hierarchy.	
	Compare different Azure compute types (Container instances, VMs, Functions). Create	CO2
	and manage VMs, VM Scale Sets, and availability sets. Explore Azure Virtual Desktop	
5	and application hosting options.	
	Set up a virtual network in Azure. Configure subnets, peering, DNS, VPN Gateway, and	CO2
6	ExpressRoute. Explore the use of public and private endpoints in Azure networking.	

K.R. MANGALAM UNIVERSITY

	Host a web application on Azure using different hosting options. Compare the	CO2
	performance and cost implications of using VMs, Azure App Service, and Azure	
7	Functions.	
	Create and manage virtual machines in Azure. Explore different VM sizes and types based	CO3
	on performance requirements. Implement VM scaling and load balancing to optimize	
8	application performance.	
	Set up Azure Blob Storage and upload/download data. Explore Table Storage and File	CO3
9	Storage services. Implement Disk Storage and understand its use cases.	
	Use the Azure Pricing Calculator and TCO Calculator to estimate the costs of running a	CO4
	sample application on Azure. Explore the Azure Cost Management and Billing tool to	
10	monitor and control costs.	
	Set up monitoring for an Azure application using Azure Monitor. Configure Log	CO4
	Analytics, set up alerts, and use Application Insights to monitor application performance	
11	and health	
	Use Azure Advisor and Azure Service Health to optimize and maintain the health of Azure	CO4
	resources. Implement recommendations provided by Azure Advisor and monitor service	
12	issues using Azure Service Health.	

STORAGE AND DATABASES ON

CLOUD

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name: Storages and Databases on Cloud	Course Code	L-T-P	Credits	Contact Hours
	ENSP405	4-0-0	4	40
Type of Course:	Minor (Department Elective III)			
Pre-requisite(s), if any: Basics of Cloud Databases				

Course Perspective. The course covers the basics of cloud computing and introduces various cloud storage and database types. It discusses migration techniques, security, and performance considerations for cloud databases. The AWS cloud storage unit focuses on Amazon S3, EC2 Instance Storage, and more. It also help student analyzing case studies of companies like Netflix and Spotify using cloud storage and databases. The course is divided into 4 modules:

- a) Introduction to Storage on cloud
- b) Data Integration, Migration, Security and performance on cloud NET Framework Fundamentals
- c) Cloud-Hosted Data Storage Systems
- d) Case Study

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding cloud storage and database fundamentals, including security best practices.
CO 2	Applying indexing, caching, and query optimization for performance in cloud storage and databases.
CO 3	Analyzing requirements to select suitable cloud storage and database solutions.
CO 4	Differentiating between types of cloud storage and database services.
CO 5	Articulating best practices for designing scalable, reliable, and secure cloud storage and databases.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number:1	Title: Introduction to Storage on cloud	
		No. of hours: 8
Content:		
Introduction to Cloud C	omputing, Overview of cloud databases and cloud storag	es, types of cloud
storages (Object, block	and file), different types of cloud database man	agement systems,
Gartner Magic Quadran	t for Cloud Database Management Systems, Advantages	of Working with
Cloud Databases, Cons	iderations for Cloud Databases, Top Cloud Database, Fa	ctors that help in
choosing the right cloud	database, Challenges involved in using cloud storages and	l databases.
r	Title: Data Integration, Migration,	
Unit Number:2	Security and performance on cloud NET	No. of hours: 10
]	FrameworkFundamentals	
Content:		<u> </u>
Techniques, tools, met	nods, and considerations for migrating from on-premise	e databases to cloud
databases; backup, rec	overy, and disaster planning, including automated ba	ackups, point-in-time
recovery, and replication	on; performance optimization and monitoring, including	query optimization,
indexing, caching, and	monitoring tools; scalability and high availability, inclu	iding load balancing,
replication, sharding, an	d auto-scaling; cloud data warehousing.	
Unit Number:3	Title: Cloud-Hosted Data Storage Systems	No. of hours: 10
Content:		
Introduction,		
Introduction to AWS cl	oud storage, AWS management console, AWS Storage S	Services, Uploading files
and images, Creating a	web server, Overview of Amazon S3, Storage Classes	, EC2 Instance Storage,
network file system Am	azon Elastic Block Store, Amazon Elastic file system, An	1azon Cloud Front. Brief
introduction to Google (Cloud Storage, and Azure Blob Storage.	
Unit Number:4	Title: Case Study	
		No. of hours: 12
Content:		
Case Studies and Real-	world Examples of Netflix , Airbnb, Pinterest, spotify, o	coca-cola etc. Analyzing

real-world use cases of organizations using cloud storage and databases, discussing architecture decisions, challenges, and lessons learned.

Learning Experiences:

Classroom Learning Experience

- 1. Interactive Lectures: Learn cloud storage and database concepts through engaging presentations.
- 2. **Problem-Based Assignments**: Analyze real-world scenarios to improve understanding of cloud solutions.
- 3. **Project Labs**: Implement cloud database solutions in hands-on labs.
- 4. Collaborative Work: Team up on case studies related to cloud storage management.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle.
- 2. **Question Bank**: Use a question bank and model papers for exam preparation.
- 3. **Real-World Applications**: Apply cloud concepts to practical scenarios.

References

- 1. Cloud Computing: Concepts, Technology & Architecture by Thomas Erl, Ricardo Puttini, and Zaigham Mahmood
- 2. Designing Data-Intensive Applications by Martin Kleppmann
- 3. Cloud Architecture Patterns: Using Microsoft Azure" by Bill Wilder

Additional Readings:

Online Learning Resources for Storage and Databases on Cloud

- I) Microsoft Learn: Introduction to Azure Storage
 - a. **Description:** Comprehensive learning path covering Azure Storage services, including Blob, File, and Disk Storage.
 - b. Link: Microsoft Learn Introduction to Azure Storage

II) AWS Training and Certification: Storage Learning Path

- a. Description: AWS offers a detailed learning path for storage services, including Amazon S3, EBS, and more.
- b. Link: <u>AWS Training Storage Learning Path</u>

III) Google Cloud Training: Storage and Databases

a. **Description:** Google Cloud offers courses on Cloud Storage, SQL, and NoSQL database services.

b. Link: Google Cloud Training - Storage and Databases

STORAGE AND DATABASES ON

CLOUD LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity		
Course Name:	Course Code	L-T-P	Credits
Storages and Databases on Cloud Lab	ENSP455	0-0-2	1
Type of Course:	Minor (Department El	ective III)	
Pre-requisite(s), if any: Basics of Cloud	Databases		

Defined Course Outcomes

COs	Statements
CO 1	Implementing database migration, backup, recovery, and performance optimization strategies for transitioning on-premise databases to AWS cloud.
CO 2	Developing cloud storage solutions for large-scale file management and optimize performance using AWS storage services and content delivery networks.
CO 3	Designing and manage cloud data warehousing solutions, including ETL processes, performance monitoring, and scalability configurations.
CO 4	Analyzing and apply best practices from real-world cloud storage use cases to enhance the scalability, reliability, and performance of cloud-based applications.

Lab Experiments

Project	Project Detail	Mapped
No.		CO/COs
1	Explore different types of cloud storages (Object, Block, File). Set up and compare	CO1
	examples of each type using a cloud provider (e.g., AWS S3 for object storage,	
	EBS for block storage, EFS for file storage).	
2	Research and analyze the Gartner Magic Quadrant for Cloud Database Management	CO1
	Systems. Create a report summarizing the top cloud database providers and their	
	key features.	
3	Implement a migration process from an on-premise database to a cloud database	CO2
	using a migration tool (e.g., AWS Database Migration Service, Google Cloud	
	Database Migration Service). Document the steps and considerations involved.	
4	Develop a cloud storage solution for a media sharing platform using AWS storage	CO2
	services to handle large-scale file uploads and downloads.	
5	Configure Amazon CloudFront for content delivery. Upload and distribute content	CO3
	using CloudFront and analyze the performance benefits. Briefly explore and set up	
	storage using Google Cloud Storage and Azure Blob Storage.	
6	Create a cloud data warehouse for an e-commerce company to store and analyze	CO3
	sales data using AWS Redshift.	
7	Develop a cloud storage and content delivery network (CDN) solution for a video	CO4
	streaming service to ensure	
8	Conduct a comprehensive analysis of how major companies like Netflix, Airbnb,	CO4
	and Spotify use cloud storage and databases to enhance their operations.	

APPLICATION DEVELOPMENT AND DEVOPS ON CLOUD

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	гтр	Credita	Contact
APPLICATION DEVELOPMENT	Course Code	L-I-P	Creans	Hours
AND DEVOPS ON CLOUD	ENSP407	4-0-0	4	40
Type of Course:	Minor (Department Elec	tive III)		
Pre-requisite(s), if any: Basics of DEVOPS Technology				

Course Perspective. The syllabus aims to equip students with practical skills and theoretical knowledge to design, develop, and deploy applications in cloud environments while implementing DevOps practices to enhance software development, delivery, and operations on the cloud. It prepares them for a career in the dynamic and rapidly growing field of cloud computing and DevOps, where demand for skilled professionals is high due to the increasing adoption of cloud technologies in various industries. The course is divided into 4 modules:

- a) Introduction to Cloud Computing
- b) Cloud-Based Application Development
- c) DevOps Practices in Cloud
- d) Cloud-Based DevOps Tools and Best Practices

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding the fundamental concepts of cloud computing and the various service and deployment models.
CO 2	Developing cloud-native applications using containerization and microservices architecture.
CO 3	Implementing DevOps practices in cloud environments, including CI/CD pipelines and Infrastructure as Code.
CO 4	Utilizing cloud-based DevOps tools for version control, collaboration, testing, and performance optimization.

CO 5	Analyzing best practices for application security, cost management, and high availability in the cloud.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number:	Title: The problem of Delivering Software	No. of hours: 10		
1				
Content Summar	ry:			
Introduction to De	evOps: Principles, Practices, Common Release ant	ipatterns, benefits.		
Configuration M	lanagement: using version control, managing	g dependencies, managing software		
configuration, man	naging tools			
Unit Number:	Title: Continuous Integration and Testing	No of hours: 10		
2	Strategy	10. 01 10013. 10		
Content Summar	ry:	· · · · · ·		
Introduction to co	ontigous integration. Implementing contiguous inte	egration, Essential practices, distributed		
version control sy	stem.			
Testing Strategy:	Introduction of testing, Types of tests, real-life	situation and strategies, and managing		
defect backlogs				
Unit Number:	Title: The deployment Dipoline	No of hours: 10		
3	The. The deployment Tipenne	110. 01 110013. 10		
Content Summary:				
Anatomy of the D	Deployment Pipeline: Introduction of deployment p	pipeline, deployment pipeline practices,		
the automated ac	ceptance test gate, test strategy, prepare to relea	ase, implement a deployment pipeline.		
Build and deployment scripting, the commit stage: principles and practices, Automated Acceptance testing,				
Testing Non functional Requirements, deploying and releasing application.				
Unit Number:		N 61 10		
4	Title: The delivering Ecosystem	No. of nours: 10		
Content Summary:				
Managing infrastructure and Environments: understanding the needs of the operation team . Managing				
server provisioning and configuration, managing the configuration of middleware, managing infrastructure				
services virtualiza	ation cloud architecture monitoring infrastructure	and application.		

managing data: Database scripting, data management and deployment pipeline.

Managing components and dependencies: Introduction, keeping your application releasable, dependencies, components, managing dependency graph.

Managing Continuous delivery: introduction, maturity model, project lifecycle, risk management process.

Learning Experiences:

Classroom Learning Experience

- 1. **Interactive Lectures**: Learn application development and DevOps concepts through engaging presentations.
- 2. **Problem-Based Assignments**: Analyze real-world scenarios to enhance development and deployment skills.
- 3. **Project Labs**: Implement cloud-based applications and DevOps practices in hands-on labs.
- 4. Collaborative Work: Work in teams on case studies related to application deployment.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback to monitor progress.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle for flexible learning.
- 2. Question Bank: Utilize a question bank and model papers for effective exam preparation.
- 3. **Real-World Applications**: Apply development and DevOps concepts to practical scenarios.

Textbooks:

• Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Pearson Education, Inc., 2011.

References

- Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Pearson Education, Inc., 2011.
- Thomas Erl, Ricardo Puttini, and Zaigham Mahmood, Cloud Computing: Concepts, Technology & Architecture, Prentice Hall, 2013.
- Arun Eapen, Docker on Amazon Web Services: Build, deploy, and manage your container applications at scale on AWS, Packt Publishing, 2017.
- Sam Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, Inc., 2015.
- Mark Richards and Neal Ford, Fundamentals of Software Architecture: An Engineering Approach, O'Reilly Media, Inc., 2020.

Additional Readings:

Online Learning Resources for Application Development and DevOps on Cloud

- I) Microsoft Learn: Azure DevOps and Development
 - a. **Description:** Comprehensive learning paths and modules on Azure DevOps, including CI/CD, IaC, and cloud-based application development.
 - b. Link: Microsoft Learn Azure DevOps and Development
- II) **AWS Training and Certification: DevOps on AWS**
 - a. **Description:** Detailed courses and certifications for learning DevOps practices and application development on AWS, covering tools like AWS CodePipeline, CodeBuild, and more.
 - b. Link: <u>AWS Training DevOps on AWS</u>

III) Google Cloud Training: Application Development

- a. **Description:** Google Cloud provides courses on developing applications using Google Cloud services, including Kubernetes, App Engine, and Cloud Functions.
- b. Link: <u>Google Cloud Training Application Development</u>

APPLICATION DEVELOPMENT AND

DEVOPS ON CLOUD LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity		
Course Name: APPLICATION DEVELOPMENT	Course Code	L-T-P	Credits
AND DEVOPS ON CLOUD LAB	ENSP457	0-0-2	1
Type of Course:	Minor (Department Elective III)		
Pre-requisite(s), if any: Basics of DEVOPS Technology			

Lab Experiments

Defined Course Outcomes

COs	Course Outcomes (COs)
CO 1	Implementing continuous integration (CI) pipelines to automate the build, test, and integration
COT	processes, ensuring smooth and efficient integration of new code changes.
CO 2	Developing and implement automated deployment pipelines for microservices and mobile
	applications, ensuring reliable and efficient deployment processes.
	Integrating comprehensive testing strategies, including acceptance and non-functional
CO 3	requirements testing, into CI/CD pipelines to ensure high code quality and performance
	standards.
CO 4	Managing and monitor cloud-based application infrastructure using automation tools, ensuring
	efficient provisioning, configuration, and continuous monitoring.

S.N	Experiment	COs
1	Set up a version control system (e.g., Git) for a sample software project. Demonstrate	CO1
	how to manage code versions, branches, and merges.	
2	Implement configuration management using a tool such as Ansible or Chef. Create	CO1
	scripts to manage software configurations and dependencies for a sample application.	

3	Explore common release antipatterns in software delivery. Analyze a real-world case	CO1
	study and propose solutions to mitigate these antipatterns using DevOps principles.	
4	Implement continuous integration for a sample project using a CI tool (e.g., Jenkins,	CO2
	Travis CI). Configure the tool to automatically build and test the project whenever code	
	changes are committed.	
5	Set up a distributed version control system (e.g., Git) for a collaborative project.	CO2
	Demonstrate branching, merging, and managing code changes in a distributed	
	environment.	
6	Implement a deployment pipeline for a sample application. Automate the build, test, and	CO3
	deployment stages using a CI/CD tool like Jenkins or GitLab CI.	
7	Write and execute build and deployment scripts for a sample project. Use scripting	CO3
	languages like Bash or PowerShell to automate the process.	
8	Set up and configure infrastructure for a sample application using Infrastructure as Code	CO4
	(IaC) tools like Terraform or CloudFormation. Demonstrate server provisioning,	
	middleware configuration, and monitoring.	
9	Implement continuous delivery for a sample project. Develop a maturity model, define	CO4
	the project lifecycle, and establish a risk management process to ensure smooth delivery	
	and deployment.	

DISCIPLINE SPECIFIC ELECTIVE - III

(FULL STACK DEVELOPMENT)

MOBILE APPLICATION

DEVELOPMENT USING IOS

Program Name:	B. Tech CSE with S	pecialization	in Cybersecur	ity
Course Name:	Course Code	L-T-P	Credita	Contact
Mobile Application			Credits	Hours
Development using iOS	ENSP409	4-0-0	4	40
Type of Course:	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of Android				

Course Perspective. The objective of the course is to provide skills to develop applications for OS X and iOS. It includes an introduction to the development framework Xcode. Objective-C is used as a programming language to develop applications. Objective-C is the superset of the C programming language and provides object-oriented capabilities and a dynamic runtime. Objective-C inherits the syntax, primitive types, and flow control statements of C and adds syntax for defining classes and methods. The course is divided into 4 modules:

- 1. Introduction to IDE and SDK of iOS App Development
- 2. Swift Programming
- 3. Encapsulating Data
- 4. Developing iOS Applications

The Course Outcomes (COs).	On completion of the course t	he participants will be:
----------------------------	-------------------------------	--------------------------

COs	Statements
CO 1	Understanding the fundamental concepts of variables, constants, and basic data types in SWIFT.
CO 2	Analyzing the use of control flow statements such as for, if, and switch in various programming scenarios.
CO 3	Applying object-oriented concepts in SWIFT, including the use of classes, structures, and protocols.
CO 4	Creating functions, closures, and extensions to enhance code modularity and reuse.
CO5	Evaluating error handling techniques and type checking mechanisms to develop robust SWIFT applications

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to SWIFT Language	No. of hours: 10	
Content Summary:			
Variables & Constants, Introduction to functions (methods), Arrays, Dictionaries, Data, Date and			

other basic data types, Enums, structures, closuresFor, If, switch statement, Object oriented concepts with SWIFT, Type check, AnyObject, Any Protocols, Extensions, Error handling, Working with classes

Unit Number: 2	Title: Working with Xcode	No. of hours: 8		
Content Summary:				
Introduction to XCOI	DE, COCOA touch framework, iOS application arch	itecture, Application		
lifecycle				
Unit Number: 3Title: Introduction to view controllers and ViewsNo. of hours: 12				
Content Summary: View Controllers, view, view lifecycle, Basic Controls – Label, Buttons, Text				
field, image View, Tab	le view with default cells and customized cells, Collect	ion view with default		
cells and customized cells, Picker view, Date picker, scroll view, navigation and Tab bar controller,				
Understanding Interface builder, XIB files, Creating outlets and Actions, Handling touch and				
gesture events, Segment and Page control, switch view, UIAlertView				
Unit Number: 4Title: Integrating with DatabaseNo. of hours: 10		No. of hours: 10		
Content Summary:				

Introduction to data storage methods in iOS, Using Core Data, SQLite database, User Defaults, Property List

Learning Experiences:

Classroom Learning Experience

- 1. Interactive Lectures: Explore iOS app development concepts through engaging presentations.
- 2. **Problem-Based Assignments**: Analyze real-world scenarios to improve mobile development skills.
- 3. **Project Labs**: Build and test iOS applications in hands-on lab sessions.
- 4. Collaborative Work: Work in teams on case studies related to mobile app development.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback to track progress.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle for convenient learning.
- 2. **Question Bank**: Use a question bank and model papers for exam preparation.
- 3. **Real-World Applications**: Apply iOS development concepts to practical mobile app scenarios.

References

- 1. iOS 14 Programming for Beginners: Kickstart your iOS app development journey with the Swift programming language and Xcode 12, 6th Edition, Ahmad Sahar and Craig Clayton.
- 2. Mastering iOS 14 Programming: Build professional-grade iOS applications with Swift 5 and Xcode 12.

Additional Readings:

Online Learning Resources for Mobile Application Development Using iOS

- Apple Developer Documentation
 - **Description:** Comprehensive documentation and tutorials for iOS app development using Swift and Xcode.
 - o Link: <u>Apple Developer Documentation</u>
- Ray Wenderlich: iOS and Swift Tutorials
 - **Description:** A collection of high-quality tutorials and courses on iOS app development, covering Swift, Xcode, and various iOS frameworks.
 - Link: <u>Ray Wenderlich iOS Tutorials</u>

• GitHub: iOS Development Resources

- **Description:** A curated list of open-source projects, libraries, and resources for learning and improving iOS development skills.
- o Link: <u>GitHub iOS Development Resources</u>

MOBILE APPLICATION

DEVELOPMENT USING IOS LAB

Program Name:	B. Tech CSH Cybersecurity	E with Specialization	in
Course Name:	Course Code	L-T-P	Credits
Mobile Application Development using iOS Lab	ENSP459	0-0-2	1
Type of Course: Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of Android			

Lab Experiments

Defined Course Outcomes

COs	Statements
CO 1	Understanding and apply fundamental concepts of iOS development using Xcode and the Cocoa Touch framework to build robust and user-friendly applications.
CO 2	Developing interactive and dynamic user interfaces in iOS applications using view controllers, views, and gesture recognizers.
CO 3	Creating and manage user interfaces and view controllers in iOS applications using Xcode, demonstrating proficiency in Interface Builder and UIKit components.
CO 4	Developing interactive and dynamic user interfaces in iOS applications using view controllers, views, and gesture recognizers.

S.N	Experiment	COs
1	Set up the iOS development environment by installing Xcode. Create a simple	CO1
	"Hello, World!" iOS application to familiarize with the Xcode IDE and Swift	
	programming basics.	
2	Develop a basic iOS application that demonstrates the use of Swift syntax, variables,	CO1

	data types, and control flow. Create a simple calculator app to perform basic	
	arithmetic operations.	
3	Use Xcode and Interface Builder to design a user interface for an iOS app. Create a	CO1
	simple user interface with labels, buttons, and text fields, and handle user	
	interactions.	
4	Implement a simple iOS app to demonstrate the app lifecycle and navigation between	CO1
	view controllers. Create a multi-screen app that navigates between different views	
	using navigation controllers.	
5	Design a responsive user interface using Auto Layout and the constraint system.	CO2
	Create an iOS app with a login screen that adjusts to different screen sizes and	
	orientations.	
6	Implement navigation between different views using storyboards and segues. Create	CO2
	a multi-screen app with a main menu and detailed views for each menu item.	
7	Implement gesture recognition and touch event handling in an iOS app. Create an	CO2
	app that responds to tap, swipe, and pinch gestures to perform different actions.	
8	Implement data persistence using Core Data. Create an iOS app that allows users to	CO3
	add, edit, and delete notes, and save them to a local database.	
9	Use User Defaults and the file system to store and retrieve user preferences and data.	CO3
	Create an app that saves user settings and displays them when the app is reopened.	
10	Implement offline data storage and synchronization. Create an iOS app that allows	CO3
	users to add data while offline and syncs with a remote server when the device is	
	back online.	
11	Implement advanced UI components and animations in an iOS app. Create a visually	CO4
	appealing app with custom views, animations, and transitions between screens.	
12	Access and use iOS sensors and hardware features. Create an app that uses the	CO4
	camera to take photos, and the GPS to display the user's current location on a map.	
13	Debug and test an iOS app using Xcode's debugging tools. Implement unit tests and	CO4
	UI tests to ensure the app functions correctly under different scenarios.	

DEVOPS & AUTOMATION

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name: DevOps & Automation	Course Code	L-T-P	Credits	Contact Hours
	ENSP411	4-0-0	4	40
Type of Course:	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of D	DEVEOPS			

Course Perspective. Throughout the subject, students will engage in hands-on exercises and projects to gain practical experience with various DevOps tools and practices. By the end of the course, students will be well-equipped to embrace the DevOps culture and apply automation techniques to enhance software development, delivery, and operations processes. The course is divided into 4 modules:

- a) Introduction to DevOps
- b) Version Control and CI/CD
- c) Containerization and Orchestration
- d) Configuration Management and Monitoring

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding the principles and benefits of DevOps, and its role in enhancing collaboration and efficiency between development and operations teams.
CO 2	Acquiring hands-on experience with popular DevOps tools such as Git, Jenkins, Docker, Kubernetes, and Ansible for implementing continuous integration, continuous delivery, and automated deployment processes.
CO 3	Demonstrating proficiency in containerization and orchestration techniques using Docker and Kubernetes for efficient and scalable application deployment and management.
CO 4	Implementing configuration management and Infrastructure as Code (IaC) using Ansible and Terraform to automate the provisioning and management of infrastructure resources.

	Developing skills in monitoring, logging, and security practices in the context of DevOps,
CO 5	ensuring application performance, resilience, and adherence to security best practices.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: Introduction to DevOps	No. of hours:						
		12						
Content Summary:								
DevOps Principles and Cult	ure: Understand the core principles of DevOps and	its cultural impact.						
Collaboration, automation, con	tinuous integration, continuous delivery, and continuous	deployment.						
DevOps Toolchain: Overview	of tools and technologies used in DevOps practices. Int	roduction to popular						
DevOps tools like Git, Jenkins,	Docker, Kubernetes, and Ansible.							
Version Control with Git: B	ranching, merging, and collaborative development usin	ng Git. Continuous						
Integration (CI): Setting up C	I pipelines with Jenkins for automated building and testi	ng.						
Continuous Delivery and Dep	loyment: Implementing CD pipelines for deploying.							
Unit Number: 2	Title: Version Control and CI/CD	No. hours: of						
		8						
Content Summary:								
Version Control with Git: Ver	sion control concepts, Git workflows, and collaboration	strategies.						
Continuous Integration with Jenkins: Setting up Jenkins pipelines, automated testing, and deployment.								
Maven Integration: Integrate Maven for dependency management and building projects.								
Unit Number: 3	Title: Containerization and Orchestration	No. hours: of						

Content Summary:

Introduction to Docker: Docker concepts, container management, and Docker file creation.

Container Orchestration with Kubernetes: Kubernetes architecture, deployment, scaling, and networking.

Docker Compose: Managing multi-container applications with Docker Compose.

Unit Number: 4	Title: Configuration Management and Monitoring	No. of
		hours: 12

Content Summary:

Configuration Management with Ansible: Ansible playbooks, roles, and infrastructure automation.

Infrastructure as Code (IaC): Terraform for provisioning and managing infrastructure.

Monitoring and Logging: Monitoring tools, log management, and application performance monitoring in DevOps.

Security in DevOps: Implementing security best practices in CI/CD pipelines and containerized environments.

Learning Experiences:

Classroom Learning Experience

- 1. **Interactive Lectures**: Explore DevOps concepts and automation techniques through engaging presentations.
- 2. **Problem-Based Assignments**: Analyze real-world scenarios to enhance DevOps and automation skills.
- 3. **Project Labs**: Implement automation tools and practices in hands-on lab sessions.
- 4. Collaborative Work: Work in teams on case studies related to DevOps implementation.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback to monitor progress.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle for flexible learning.
- 2. Question Bank: Utilize a question bank and model papers for effective exam preparation.
- 3. Real-World Applications: Apply DevOps and automation concepts to practical scenarios.

References

- Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, Authors: Jez Humble and David Farley, Publisher: Pearson Education, Inc., Year: 2011
- The Kubernetes Book, Author: Nigel Poulton, Publisher: Independently published, Year: 2018
- Building Microservices: Designing Fine-Grained Systems, Author: Sam Newman, Publisher: O'Reilly Media, Inc., Year: 2015
- Microservices Patterns: With examples in Java, Author: Eberhard Wolff, Publisher: Manning Publications, Year: 2018
- Terraform: Up & Running: Writing Infrastructure as Code, Author: Yevgeniy Brikman, Publisher: O'Reilly Media, Inc., Year: 2017

Additional Readings:

Online Learning Resources for DevOps & Automation

- I) Kubernetes Academy by VMware
 - a. **Description:** Free courses provided by VMware on Kubernetes, covering everything from basic concepts to advanced orchestration techniques.
 - b. Link: <u>Kubernetes Academy by VMware</u>

II) HashiCorp Learn: Terraform

- a. **Description:** HashiCorp's official resource for learning Terraform, providing tutorials and hands-on labs for infrastructure as code.
- b. Link: <u>HashiCorp Learn Terraform</u>
- III) **Docker: Docker for Developers**
 - a. **Description:** Docker's official training resources for developers, covering containerization, Docker Compose, and more.
 - b. Link: <u>Docker Docker for Developers</u>

DEVOPS & AUTOMATION LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	
DevOps & Automation Lab	ENSP461	0-0-2	1	
Type of Course:	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of DEVEOPS				

Lab Experiments

Defined Course Outcomes

COs	Course Outcomes
CO 1	Implementing collaborative development and continuous integration using Git and Jenkins,
	demonstrating proficiency in version control, automated testing, and deployment processes.
CO 2	Developing and deploy microservices applications using Docker for containerization and
	Kubernetes for orchestration, managing multi-container applications efficiently.
CO 3	Managing automated infrastructure provisioning and configuration using Ansible and
03	Terraform, demonstrating expertise in infrastructure as code and configuration management.
CO 4	Implementing continuous monitoring, logging, and security best practices in a DevOps
	environment, ensuring application performance, system health, and data integrity.

S.N	Experiment	Mapped
		CO(s)
1	Set up a Git repository and practice branching, merging, and collaborative	CO1
	development. Create a small project and manage code versions using Git.	
2	Install and configure Jenkins for continuous integration. Create a simple CI	CO1
	pipeline that automatically builds and tests a project whenever code changes are	
	committed to the repository.	
3	Implement a continuous delivery pipeline using Jenkins. Deploy a sample	CO1
	application to a staging environment automatically after successful builds and	
	tests.	

4	Implement different Git workflows (e.g., GitFlow, Feature Branch Workflow)	CO2
	for a collaborative project. Manage branches, merges, and resolve conflicts.	
5	Set up a Jenkins pipeline for continuous integration. Configure automated testing	CO2
	and deployment for a sample project. Integrate with a version control system like	
	Git.	
6	nstall Docker and create Dockerfiles for a sample application. Build, run, and	CO3
	manage containers using Docker commands.	
7	Use Docker Compose to manage multi-container applications. Create a Docker	CO3
	Compose file to run a web application with a database and other services.	
8	Use Terraform to provision and manage cloud infrastructure. Create Terraform	CO4
	scripts to deploy a web application on a cloud provider (e.g., AWS, Azure).	
9	Set up monitoring and logging for a sample application. Use tools like	CO4
	Prometheus, Grafana, and ELK Stack (Elasticsearch, Logstash, Kibana) to	
	monitor and analyze application performance and logs.	

.NET FRAMEWORK

Program Name:	B. Tech CSE with Specialization in Cybersecurity				
Course Name:	Course Code	L-T-P	Credits	Contact Hours	
.NET Framework	ENSP413	4-0-0	4	40	
Type of Course:	Minor (Department Elective IV)				
Pre-requisite(s), if any: Basics of Programming					

Course Perspective. The ".NET Framework" syllabus covers introduction and components of .NET, programming languages, Visual Studio, OOP, exception handling, memory management, Windows Forms/WPF, ASP.NET, web services, .NET Core, Entity Framework, and WCF. Emphasis on practical application and development skills for building robust and secure applications. The course is divided into 4 modules:

- a) .NET Framework
- b) .NET Framework Fundamentals
- c) Building Applications with .NET Framework

d) ASP.NET Framework

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding .NET Framework's architecture, CLR, and CTS for cross-language integration and platform independence.
CO 2	Applying OOP concepts in .NET for designing robust software solutions.
CO 3	Utilizing Visual Studio debugging for diagnosing and fixing errors in .NET applications.
CO 4	Demonstrating proficiency in memory management and garbage collection in .NET.
CO 5	Designing web applications using ASP.NET, incorporating best practices.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number:1	Title: .NET	[Framewor]	k			
					No. of hours: 8	
Content Summary:						
NET Framework - Architec	ture, Comm	on Languag	e Runtime, Common	Type Syst	tem, Namespaces,	
Assemblies, Memory Mana	gement, Pro	ocess Manag	ement, Class Libraries	5		
	Title:	.NET	Framework			
Unit Number:2	Fundamen	tals			No. of hours: 8	
Content Summary:						
Object-Oriented Programming (OOP) in .NET, Classes, objects, and inheritance, Exception Handling						
and Debugging, Debugging techniques and tools in Visual Studio, Logging and error reporting in .NET						
applications, Memory Management and Garbage Collection, Automatic memory management in .NET,						
Garbage collection, Finalizers and the Dispose pattern						
Unit Number:3	Jnit Number:3Title: Building Applications withNo. of hours: 12					
	.NET Fran	nework				

Content Summary:

.NET - Declaration, Expression, Control Structures, Function, String, Array, Encapsulation, Class, Property, Indexer, Delegate, Inheritance, Interface, Polymorphism, Exception Handling, Modules, Graphics, File handling and Data Access. .NET – Form- Event–Form Controls – Containers – Menus -Data controls - Printing – Reporting – Dialogs – Components - Single and Multiple Document Interfaces.

Unit Number:4	Title:	ASP.NETFramework		
			No. of hours:	12

Content Summary:

ASP.NET – Web Pages, Web Forms, Web Site Design, Data Controls, Validation Controls, HTML, Navigation Controls, Login Controls, Reports - Master Pages – Web Service Architecture - Basic Web Services – Web Reference – Standards

Learning Experiences:

- 1. Interactive Lectures: Explore .NET Framework concepts through engaging presentations.
- 2. Problem-Based Assignments: Analyze real-world scenarios to enhance .NET development skills.
- 3. **Project Labs**: Build and test applications using the .NET Framework in hands-on labs.
- 4. Collaborative Work: Work in teams on case studies related to .NET application development.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback to track progress.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle for convenient learning.
- 2. **Question Bank**: Utilize a question bank and model papers for effective exam preparation.
- 3. Real-World Applications: Apply .NET concepts to practical application scenarios.

Textbooks

- 1. Pro C# 8 with .NET Core: Foundational Principles and Practices in Programming by Andrew Troelsen and Philip Japikse, Apress, 9th Edition, 2020
- 2. Pro ASP.NET Core 3 by Adam Freeman, Apress
- 3. ASP.NET Core in Action by Andrew Lock

Additional Readings:

Online Learning Resources:

- Online Tutorials and Documentation: Direct students to the official Microsoft documentation for .NET Framework, which provides comprehensive guides and resources. <u>Microsoft .NET</u> <u>Documentation</u>
- II) Hands-on Coding Exercises: Assign coding exercises from platforms like LeetCode or HackerRank that focus on implementing concepts of .NET Framework. <u>LeetCode HackerRank</u>

III) Project-Based Learning: Encourage students to work on small projects using different aspects of the .NET Framework. Provide examples of projectideas and resources like GitHub repositories for inspiration. <u>GitHub</u>

.NET FRAMEWORK LAB

Program Name:	B. Tech CSE with Specializat	B. Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits		
.NET Framework Lab	ENSP463	0-0-2	1		
Type of Course:	Minor (Department Elective IV	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of Programming					

Lab Experiments

Defined Course Outcomes

COs	Statements
CO 1	Understanding and apply object-oriented design principles, exception handling, memory management, and debugging techniques to develop robust .NET applications.
CO 2	Developing graphical user interfaces and handle events in .NET applications to create interactive and user-friendly software solutions.
CO 3	Implementing web development techniques in ASP.NET, including web forms, user authentication, master pages, and web services to build secure and dynamic web applications.
CO 4	Analyzing and utilize data handling, reporting, and visualization techniques to create comprehensive and functional software systems for various domains.

Lab Experiments

S.N	Experiment	Mapped
		CO/COs
1	Explore the architecture of the .NET Framework. Create a simple console	CO1
	application to understand the basic structure and components of a .NET project.	
2	Demonstrate the functionality of the Common Language Runtime (CLR).	
	Create a .NET application that uses various data types and namespaces to	CO1
	show how the CLR manages execution.	
3	Implement a .NET application that showcases the Common Type System (CTS).	
	Define and use various data types, and demonstrate type conversion and	CO1
	interoperability.	
4	Create and manage assemblies in a .NET application. Demonstrate how to build,	CO1

	reference, and use assemblies in a multi-project solution.	
5	Implement a simple object-oriented application in .NET. Define classes, create	CO2
	objects, and demonstrate inheritance and polymorphism.	
6	Implement a .NET application that logs errors and handles exceptions gracefully.	
	Use a logging framework (e.g., NLog, log4net) to record application events and	CO2
	errors.	
7	Build a .NET application demonstrating advanced OOP concepts such as	CO3
	encapsulation, properties, indexers, delegates, interfaces, and polymorphism.	
8	Create a .NET application that handles graphics and file I/O. Implement	
	functionality to draw shapes, handle images, and perform file read/write	CO3
	operations.	
9	Implement a .NET application with a rich user interface. Use forms, event	
	handling, form controls, containers, menus, data controls, printing, and reporting	CO3
	functionalities to create a feature-rich application.	
10	Create a basic ASP.NET web application. Design web pages and web forms to	CO4
	understand the structure and components of an ASP.NET project.	
11	Develop an ASP.NET application with user authentication. Use login controls to	
	implement user authentication and authorization, and create a simple reporting	CO4
	feature to display user data.	
12	Create and consume a basic web service in ASP.NET. Implement a web service	
	that provides data to a client application, and demonstrate how to use web	CO4
	references to integrate the web service with an ASP.NET project.	

NEW AGE PROGRAMMING

LANGUAGES

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	Contact Hours
New-Age programming languages	ENSP415	4-0-0	4	40
Type of Course:	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of Programming				

Course Perspective. New-Age programming languages (GO, F#, Clojure, Kotlin) provides an introduction to the concepts and applications of modern programming languages. It explore the features and benefits of GO, F#, Clojure, and Kotlin, and develop practical skills in programming using these languages. The course will cover language syntax, data types, control structures, functional programming concepts, concurrency, and integration with other technologies. The course is divided into 4 modules:

- 1. GO Programming Language
- 2. F# Programming Language
- 3. Clojure Programming Language
- 4. Kotlin Programming Language

The Course Outcomes (COs). On completion of the course the participants will be:

COs	Statements
CO 1	Understanding principles and paradigms of modern programming languages.
CO 2	Developing proficiency in syntax, data structures, and control flow of each language.
CO 3	Exploring unique features and strengths of each language.
CO 4	Applying development tools to improve code quality and productivity.
CO 5	Designing and implement projects integrating multiple programming languages.

CO = **Course outcomes.** A student is expected to have learnt concepts and demonstrated/developed abilities or skills related to strategic management at the end of the course.

Course Outline:

Unit Number: 1	Title: GO programming Language	No. of hours: 10			
Content Summar	y:				
Overview and C	omparison: Overview of GO, F#, Clojure	e, and Kotlin, Comparison with traditional			
programming lang	uages, Installation and setup of development	environment,			
GO Programming	g Basics: Introduction to GO syntax and da	ta types, Control structures in GO, Functions			
and packages, Arra	ays, slices, and maps, Structs and custom data	types,Pointers and memory management			
Unit Number: 2Title:F# Programming LanguageNo. of hours: 10					
Content Summary:					
Introduction to F#	syntax and functional programming concepts	s, Data Types, Variables, Operators, Decision			
Making, Loops, Functions, Strings, Options, Immutable data types and pattern matching, Higher-order					
functions and currying, Asynchronous and parallel programming in F#, Object-Oriented Programming with					
F#, Database access with F#, Querying and manipulating data using F#, Integration with relational and					
NoSQL databases					
Unit Number 3	Title: Introduction to Clojure	No of hours: 10			
	Programming				

Content Summary:

Introduction to Clojure: Overview of Clojure and its features, Setting up the development environment,

Basic Syntax and Functional Programming, Basic syntax and data structures, Functional programming concepts, Immutable data and pure functions, Higher-order functions and recursion, Collections and sequence operations, Restructuring and pattern matching

Error Handling and Testing: Exception handling and error management in Clojure, Testing strategies and frameworks in Clojure,

Data Manipulation and Transformation: Data manipulation with Clojure's sequence functions, Data transformation with transducers, Data-driven development with data literals and data readers

Unit Number: 4	Title:	Introduction	to	Kotlin	No of hours: 10
	Programmin	g			

Content Summary:

Overview of Kotlin and its advantages, Setting up the development environment, Basic syntax and data types in Kotlin, Conditional statements and loops, Function declarations and parameters, Lambda expressions and higher-order functions,

Object-Oriented Programming in Kotlin: Classes, objects, and inheritance, Properties and access modifiers, Interfaces and abstract classes, Understanding nullable and non-nullable types, Safe calls and the Elvis operator, Type inference and smart casting,

Collections and Functional Programming: Working with lists, sets, and maps in Kotlin, Collection operations and transformations, Introduction to functional programming concepts in Kotlin, Creating extension functions in Kotlin, Using DSLs for domain-specific problems, Builder pattern and DSL implementation.

Learning Experiences:

Classroom Learning Experience

- 1. Interactive Lectures: Explore new programming languages through engaging presentations.
- 2. Problem-Based Assignments: Analyze real-world scenarios to enhance programming skills.
- 3. **Project Labs**: Build and test applications using various new programming languages in hands-on labs.
- 4. Collaborative Work: Collaborate on case studies related to modern programming practices.
- 5. Continuous Feedback: Receive regular assessments and instructor feedback to monitor progress.

Outside Classroom Learning Experience

- 1. Moodle Access: Access course materials anytime via Moodle for flexible learning.
- 2. **Question Bank**: Utilize a question bank and model papers for effective exam preparation.

3. **Real-World Applications**: Apply concepts from new programming languages to practical scenarios.

Text Books:

- 1. The Go Programming Language, Alan A. A. Donovan and Brian W. Kernighan, Addison-Wesley Professional.
- 2. An Introduction to Programming in Go, Caleb Doxsey, CreateSpace Independent Publishing.

References

- 1. Real-World Functional Programming: With Examples in F# and C#, Tomas Petricek and Jon Skeet, Manning.
- 2. Programming F# 3.0: A Comprehensive Guide for Writing Simple Code to Solve Complex Problems, Chris Smith, O'Reilly Media.
- 3. Getting Clojure: Build Your Functional Skills One Idea at a Time, Russ Olsen, O'Reilly.
- 4. The Joy of Clojure, Michael Fogus and Chris Houser, Manning Publication.
- 5. Atomic Kotlin, Bruce Eckel and Svetlana Isakova, Mindview LLC.
- 6. Kotlin in Action, Dmitry Jemerov and Svetlana Isakova, Manning Publication.

Additional Readings:

Online Learning Resources for New-Age Programming Languages

- a) Go (Golang)
 - 1. Coursera: Programming with Google Go
 - 1. **Description:** An introductory course to Go programming, covering language syntax, data structures, and more.
 - 2. Link: Coursera Programming with Google Go
 - 2. Go by Example
 - 1. **Description:** A hands-on introduction to Go using annotated example programs.
 - 2. Link: <u>Go by Example</u>
- b) **F**#

1. Microsoft Learn: Introduction to F#

- 1. **Description:** A series of modules introducing the F# language, its syntax, and functional programming concepts.
- 2. Link: Microsoft Learn Introduction to F#
- c) Clojure
 - 1. ClojureBridge

- 1. **Description:** Free Clojure workshops for beginners, including resources and exercises.
- 2. Link: <u>ClojureBridge</u>
- 2. Learn Clojure: Clojure for the Brave and True
 - 1. **Description:** A beginner-friendly book that teaches Clojure through real-world projects and examples.
 - 2. Link: <u>Clojure for the Brave and True</u>
- d) Kotlin
 - 1. Kotlin Lang: Kotlin Documentation
 - 1. Description: Official Kotlin documentation and tutorials by JetBrains.
 - 2. Link: Kotlin Documentation
 - 2. Udacity: Kotlin for Android Developers
 - 1. Description: A course by Udacity focusing on Kotlin for Android development.
 - 2. Link: Udacity Kotlin for Android Developers

NEW AGE PROGRAMMING

LANGUAGES LAB

Program Name:	B. Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	
New Age Programming languages Lab	ENSP465	0-0-2	1	
Type of Course:	Minor (Department Elective IV)			
Pre-requisite(s), if any: Basics of Programming				

Course Outcomes (CO)

COs	Statements			
CO1	Understanding the fundamental principles and paradigms of modern programming languages.			
CO2	Developing proficiency in using the syntax, data structures, and control flow constructs of each language.			
CO3	Exploring the unique features and strengths of each language, such as Go's focus on concurrency, F#'s functional programming capabilities, Clojure's emphasis on immutability and simplicity, and Kotlin's interoperability with existing Java code.			
CO4	Applying the languages' respective development tools and best practices.			
CO5	Implementing projects that utilize the strengths of each language to tackle complex problems or tasks.			

Lab Experiments

S			
•	Experiment Title	CO	
N			
1	Develop a RESTful API for a simple blog application in Go. The API should allow users to create,	CO1	
	read, update, and delete blog posts. Use Go's built-in net/http package and struct types for handling		
	blog post data		
2	Create a command-line tool in Go that fetches and displays current weather information for a	CO1	
	specified city. Use a public weather API and Go's JSON parsing capabilities to implement this tool.		
3	Set up the F# development environment. Create a simple F# program to demonstrate basic syntax,	CO1	
	data types, and variables.		
4	Develop a functional calculator application in F#. The calculator should support basic arithmetic	CO2	
	operations, as well as more advanced functions like trigonometry and logarithms. Use pattern		
	matching and immutable data structures to handle calculations.		
5	Create a small web application in F# using Suave (a lightweight web server library). The application	CO2	
	should allow users to register, log in, and create simple posts. Implement basic session management		
	and data storage.		
6	Build a financial portfolio tracker in F#. The application should allow users to input and track their	CO2	
	investments, calculate current value, and generate reports. Use F#'s asynchronous programming		
	capabilities to fetch real-time stock prices from a financial API.		
7	Develop a to-do list application in Clojure. The application should allow users to add, remove, and	CO3	
	mark tasks as complete. Use Clojure's sequence operations and immutable data structures to manage		
	tasks.		
8	Create a simple web scraper in Clojure. The scraper should fetch data from a specified website, parse	CO3	
	the HTML content, and extract specific information. Use Clojure's libraries for HTTP requests and		
	HTML parsing.		
9	Develop a Kotlin-based Android application for tracking fitness activities. The app should allow	CO4	
	users to log their workouts, view statistics, and set goals. Use Kotlin's object-oriented features and		
	Android SDK for development.		
1	Create a Kotlin DSL (Domain-Specific Language) for generating HTML pages. The DSL should	CO4	
0	allow users to define HTML structures using Kotlin syntax and generate the corresponding HTML		
	code.		

SEMESTER: VIII

Industrial Project/R&D Project/Start-up Project

Program	B.Tech CSE with Specialization in Cybersecurity			
Course Name:	Course Code	L-T-P	Credits	
Industrial Project/R&D Project/Start-up Project	ENSI452		12	
Type of Course:	Proj-4			
Pre-requisite(s) if any: Fundamentals of Computer Science				

Preface:

The **B.Tech Final Semester Full-Time Project Work** is a culmination of the academic journey for engineering students at the School of Engineering & Technology, K.R. Mangalam University. This detailed Standard Operating Procedure (SOP) is designed to guide students through their project, ensuring a comprehensive, practical, and outcome-driven approach.

The SOP provides a framework for students to choose from three types of projects—**Industrial Projects**, **Research & Development (R&D) Projects**, and **Start-up Projects**. It emphasizes experiential learning, real-world problem-solving, and interdisciplinary collaboration, focus on holistic development, innovation, and entrepreneurship. Students will work under the mentorship of both internal faculty and external experts, ensuring they are equipped with the skills and knowledge required to excel in industry, research, or entrepreneurship.

This document outlines each stage of the project work, from proposal submission to final evaluation, and offers clear guidelines for successful completion. By adhering to this SOP, students will not only demonstrate their technical proficiency but also contribute meaningfully to industry, academia, and society.

Standard Operating Procedure (SOP) for B.Tech Final Semester Full-Time Project Work

1. Introduction

The **B.Tech Final Semester Full-Time Project Work** is an essential academic requirement aimed at providing students with the opportunity to apply theoretical knowledge to practical challenges. The project is designed to foster critical thinking, problem-solving, innovation, and research-oriented learning, with a focus on real-world industrial, research, and entrepreneurial domains. Students may choose from:

- Industrial Project: Solving real industrial problems in collaboration with an industry partner.
- **Research & Development (R&D) Project**: Contributing to academic and applied research, with external guidance from academic/research institutions.

• **Start-up Project**: Developing and launching innovative start-up ideas with entrepreneurial mentors.

The SOP ensures that the project, emphasizing interdisciplinary, practical, and outcome-based learning.

2. Objectives

The primary objectives of the full-time project are:

- **Application of Theoretical Knowledge**: Enabling students to apply their academic learning to practical problems.
- **Holistic Development**: Promoting interdisciplinary learning, critical thinking, creativity, and problem-solving.
- **Research and Innovation**: Encouraging innovative solutions, leading to publications, patents, or prototypes.
- Industry Collaboration: Fostering partnerships with industries for real-world problem-solving.
- Entrepreneurship Development: Developing entrepreneurial skills and creating viable start-ups.
- **Global Competency**: Ensuring students develop the skills required to excel in global environments through research, innovation, and collaboration.

3. Types of Projects

a) Industrial Project

Students working on Industrial Projects will:

- Collaborate with an industry partner.
- Identify specific, real-world challenges faced by the company.
- Propose and implement a solution that provides value to the industry.
- Develop a final product or prototype that can be implemented in the industrial setting.

Project Proposal:

- Problem Statement and Objectives: Identify the industrial problem and outline the objectives.
- Proposed Solution: Present a detailed methodology for solving the problem.
- Deliverables: Define tangible deliverables, including prototypes, software, or hardware.
- Expected Impact: Outline the expected impact on the industry.

Evaluation Criteria:

- Practical implementation and solution viability (40%)
- Project innovation (20%)
- Industrial applicability and impact (20%)
- Final presentation and report quality (20%)

b) Research & Development (R&D) Project

The **R&D Project** focuses on creating innovative research outcomes through collaborations with academic or research institutions. This can result in publications, research reports, or new discoveries.

Project Proposal:

- Literature Review: Detailed research on existing work related to the chosen topic.
- Hypothesis/Research Questions: Define the specific research problem or question.
- Methodology: Include data collection, experimental design, and analysis techniques.
- Research Timeline: Step-by-step phases of research with milestones.

External Mentor: Collaboration with an **external academic expert** is mandatory for research projects. The external mentor must be a research professional with expertise in the specific field of study.

Internal Mentor: Each student will also be assigned an **internal faculty member** who will supervise the project. The internal mentor will ensure that the research meets academic standards and deadlines.

Evaluation Criteria:

- Quality of Research and Novelty (30%)
- Research Methodology (25%)
- Contributions to the field (20%)
- Final Report, Presentation, and Publication (25%)

c) Start-up Project

The **Start-up Project** involves developing a business model or creating a start-up venture. Students work on a product/service idea that addresses a significant market need or societal problem.

Project Proposal:

- Start-up Idea: Explain the business or product idea.
- Market Research: Detailed research on the market, target customers, competitors, and potential revenue streams.
- Business Plan: Define the steps needed to take the idea to market, including funding, development phases, marketing, and operational plans.
- Product Prototype: If applicable, develop a working prototype.

Mentorship:

- **External Mentor**: An industry/start-up expert will guide the student in refining the idea, business model, and market strategy.
- **Internal Faculty Mentor**: An internal mentor will provide academic guidance and ensure the start-up idea is feasible and innovative.

Evaluation Criteria:

• Start-up viability and market potential (30%)

- Product or service innovation (30%)
- Prototype/Business Model Development (20%)
- Final Pitch/Presentation and Start-up Plan (20%)

4. Roles and Responsibilities

a) Student's Responsibilities:

- Select a suitable project topic based on interests (industrial, R&D, or start-up).
- Draft and submit a detailed proposal with objectives, methodology, timelines, and deliverables.
- Coordinate with both external and internal mentors regularly for feedback and guidance.
- Maintain a weekly progress report for both mentors.
- Submit a final comprehensive report and present the project.

b) Internal Supervisor:

- Guide the student throughout the project.
- Provide academic input and ensure that the project aligns with the program outcomes.
- Conduct progress reviews and ensure timelines are adhered to.
- Evaluate the project at the mid-term and final stages.

c) External Mentor:

- Offer specialized industrial, research, or entrepreneurial guidance.
- Provide real-world problem insights for industrial and start-up projects.
- Ensure the project is relevant to the chosen industry, research domain, or start-up ecosystem.
- Participate in the final evaluation of the project.

5. Project Phases

Phase 1: Proposal Submission and Approval

- Students will submit a project proposal during the first two weeks of the final semester.
- The proposal must include the problem statement, objectives, literature review (for R&D projects), methodology, and expected outcomes.
- The proposal is subject to review and approval by the internal supervisor and external mentor.

Phase 2: Planning and Resource Allocation

- Once approved, the student will develop a project plan that includes:
 - **Project Milestones**: Break down the project into smaller tasks with defined milestones.
 - **Resource Requirements**: Identify any software, hardware, lab resources, or tools required for the project.
 - **Team Roles**: For group projects, define the roles of each team member.

• **Risk Assessment**: Highlight potential risks and the corresponding mitigation strategies.

Phase 3: Mid-term Review

- A mid-term review will be conducted halfway through the project to assess progress.
- Students will present their work to a committee consisting of the internal supervisor, external mentor, and department head.
- The review will assess the progress against the timeline and suggest course corrections if needed.

Phase 4: Final Execution and Evaluation

- **Industrial Projects**: Students must submit a prototype or industrial report, demonstrating the solution's applicability to the industry.
- **R&D Projects**: Students must submit a final research report or publish findings in academic journals.
- **Start-up Projects**: Students must present a business plan, along with a working prototype, market analysis, and revenue model.

Phase 5: Final Report Submission and Presentation

- **Final Report**: The project report should contain a title page, abstract, introduction, problem statement, objectives, methodology, results, discussion, conclusions, future scope, references, and appendices.
- **Presentation**: Students will deliver a final presentation to a panel of evaluators, showcasing their work, findings, or product.
- **Evaluation**: Based on the final report and presentation, students will be awarded marks in accordance with the evaluation rubrics.

6. Collaboration and Mentorship

For **Research Projects**, the mentorship will involve both:

- **External Mentor**: An academic expert outside the institution, preferably from a reputed university or research institute.
- Internal Mentor: A faculty member from the student's department to provide academic and administrative guidance.

For Industrial Projects:

• External mentorship will come from industry professionals, preferably from the partnering company.

For Start-up Projects:

• External mentorship will involve experienced entrepreneurs, start-up founders, or investors.

Mentors will:

- Provide critical inputs on the technical, business, or research aspects of the project.
- Offer feedback and advice during each phase of the project.

7. Documentation and Submission Requirements

Students are required to:

- Submit their proposal, mid-term report, final report, and any supporting documents via the Learning Management System (LMS).
- Maintain detailed project logs and weekly reports.